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Abstract

Working in the infinite plane R2, consider a Poisson process of
black points with intensity 1, and an independent Poisson process of
red points with intensity λ. We grow a disc around each black point
until it hits the nearest red point, resulting in a random configuration
Aλ, which is the union of discs centered at the black points. Next,
consider a fixed disc of area n in the plane. What is the probability
pλ(n) that this disc is covered by Aλ? We prove that if λ3n log n = y,

then, for sufficiently large n, e−8π2y ≤ pλ(n) ≤ e−
2
3
π2y. The proofs

reveal a new and surprising phenomenon, that the obstructions to
coverage occur on a wide range of scales.
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1 Introduction

Place discs of radius r in R2 so that their centers form a Poisson process of
intensity 1, and let Bn ⊂ R2 be a disc of area n ≫ r2. What is the probability
that Bn is covered by the small discs? This question, inspired by biology [9],
has a long history, and many detailed results are known about it [4, 7]. For
instance, writing

πr2 = log n+ log log n+ t,
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Svante Janson proved in 1986 [7] that coverage occurs with probability asymp-
totically e−e−t

, as n → ∞. One approach to this result [2, 3] uses the fact
that the obstructions to coverage are small uncovered regions, which essen-
tially form their own Poisson process, of intensity e−t/n. Although these
uncovered regions may be of different shapes, they are all roughly the same
size. Mathew Penrose proved an analogous result for connectivity of the un-
derlying graph [10], where the obstructions – isolated vertices – are again
of the same size; the generalized coverage process where the disc radii are
independent, identically distributed random variables (the so-called Boolean
model) has also received much attention [6, 8]. Here we study a simple vari-
ant of the original problem, in which the disc radii are no longer independent,
and where there are many different obstructions of many different sizes.

To define the process, let P and P ′ be independent Poisson processes,
of intensities 1 and λ respectively, in R2. We will call the points of P black
points and the points of P ′ red points. Place an open disc D(p, rp) of radius rp
around each black point p ∈ P , where rp is maximal so that D(p, rp)∩P ′ = ∅.
In other words, rp is the distance from the black point p to the nearest red
point p′ ∈ P ′ to p. p′ is almost surely unique, and we will refer to it as
the stopping point of the disc centered at p, or of p itself. We thus obtain a
random set Aλ ⊂ R2 which is the union of discs centered at the points of P .
Now let Bn ⊂ R2 be a fixed disc of area n, write Bλ(n) for the event that
Bn ⊂ Aλ ∪P ′ (note that Aλ ∩P ′ = ∅ since the discs D(p, rp) are open), and
set pλ(n) = P(Bλ(n)). Since adding red points makes coverage less likely,
pλ(n) is a non-increasing function of λ, for fixed n. In addition, pλ(n) is non-
increasing in n, with λ fixed, because increasing n corresponds to examining
the random set Aλ over a larger area.

This model, based on the secrecy graph [5], was inspired by the issue of
security in wireless networks, and was studied in [11], where it was proved
that if λ3n → ∞ then pλ(n) → 0, while if λ3n(log n)3 → 0 then pλ(n) → 1.
In this paper, we prove that the correct indicator of coverage is f(λ, n) =
λ3n log n. Specifically, if λ3n log n = y, then, for sufficiently large n, e−8π2y ≤
pλ(n) ≤ e−

2
3
π2y. Interestingly, the proofs indicate that there are obstructions

on a range of scales; it seems that, close to the coverage threshold, there will
be small uncovered regions whose widths range from around 1 to just above
n−1/6.

Let us note that the problem of determining the covered volume fraction
of Aλ, which can be defined as fλ = P(O ∈ Aλ) (where O is the origin), was
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solved in [11]. The result is that

fλ = 1−
∫ ∞

0

f(t)e−t/λ dt,

where f(t) is the (currently unknown) probability density function for the
volume of the cell containing the origin O in the Voronoi tessellation formed
from P ∪ {O}, where P is a unit intensity Poisson process in R2. This is
a genuinely different problem from the present one – it is entirely possible
that the expected amount of uncovered area in Bn tends to zero, but that
the probability that not all of Bn is covered tends to one. Indeed this does
occur for certain values of the parameters.

As motivation for our main results, let us briefly state, and sketch the
proof of, the result for the one-dimensional version of our problem. Here, we
wish to cover an interval In of length n with small intervals centered at black
points (a Poisson process with intensity 1), which in turn are stopped by red
points (a Poisson process with intensity λ). Denoting the probability of such
coverage by p1λ(n), the result is as follows.

Theorem 1. If λ2n = x, then p1λ(n) → e−4x as n → ∞.

Proof. Let L be an interval of length ℓ between two consecutive red points
in In. We wish to compute the probability that L is covered. With this in
mind, let m be the midpoint of L, let x be the distance of the closest black
point to m lying on the left of m, and let y be the distance of the closest
black point to m lying on the right of m. Then coverage of L is determined
solely by x and y. Indeed, coverage occurs if and only if x + y < ℓ/2.
Consequently, the probability that L is covered is just P(Po(ℓ/2) ≥ 2) =
1 − e−ℓ/2(1 + ℓ/2). Next, the unconditional probability that the interval
between two consecutive red points is covered, obtained by integrating the
above probability against the density function of ℓ, is (1 + 2λ)−2 ∼ 1 − 4λ.
Finally, since there are asymptotically nλ → ∞ intervals between consecutive
red points, and coverage fails independently in each one with probability
asymptotically 4λ → 0, the number of failures is approximately Poisson with
mean 4nλ2 = 4x, and the result follows.

The above argument reveals that the obstructions to coverage will typ-
ically comprise two red points, distance O(1) apart, without black points
sufficiently close to their midpoint to ensure coverage of the interval between

3



them. The set of such intervals is roughly four times as large as its sub-
set consisting of consecutive red points with no black point between them.
In other words, choosing λ to prohibit such pairs of consecutive red points
provides a necessary condition for coverage, λ2n → 0, which is in fact also
sufficient, although such an argument gives the wrong constant in the expo-
nent in Theorem 1. One might expect that a similar situation will exist in
two dimensions, namely that if λ3n = x, then pλ(n) tends to e−cx, or possibly
some other function of x. The likely obstructions might be triples {p, q, r}
of red points forming a triangle T , whose sides and area are O(1), and which
contains no black points in its interior. However, as we shall show, the truth
is more complicated.

The (somewhat unorthodox) organization of this paper is as follows. Since
the proof of the main theorem is complicated, we begin by showing the weaker
result that if λ3n log n = f(λ, n) → ∞ then pλ(n) → 0, while if f(λ, n) → 0
then pλ(n) → 1. This will be accomplished in the next section, using good
configurations, which are the key to all that follows. The third and final
section contains the proof of our main result, Theorem 4. The proof of
Theorem 4 proceeds along similar lines to those of Theorems 2 and 3, but
with more careful estimates for both the principal term and the error terms
in our approximation of pλ(n).

In this paper, C,C ′ and C ′′ denote absolute constants which do not de-
pend on n. We write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞, f(n) = o(1)
means that f(n) → 0 as n → ∞, and f(n) = O(1) means that, for some
constant C, f(n) ≤ C for all n. Sometimes we will abuse this notation
slightly, so that, for instance, “O(log n) triangles” means f(n) triangles,
where f(n) ≤ C log n for some absolute constant C, and o(1) + n2 means
g(n) + n2 with g(n) → 0 as n → ∞. The phrase “with high probability”
will mean “with probability tending to 1 as n → ∞”; sometimes this is also
written “asymptotically almost surely”. Also, for all our results, we will have
λ = λ(n), although we will always suppress the dependence on n.

2 Good configurations

We begin by showing that, in two dimensions, the condition λ3n → 0 is not
sufficient to ensure coverage.

Theorem 2. If λ3n log n → ∞, then pλ(n) → 0.
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Proof. Our strategy will be to show that, under the hypothesis, the expected
number of good configurations (defined below) tends to infinity. A routine
application of the second moment method then shows that a good configu-
ration occurs with high probability (probability tending to one). Finally, we
show that a good configuration results in an uncovered region of Bn.

First, therefore, we define a good configuration. Such a configuration,
illustrated (though not to scale) in Figure 1, consists of an ordered triple
(p, q, r) of red points in Bn. p and q must lie at distance t, where n−1/12 <
t < 1. r must lie at distance between 50/t and 100/t of p, in such a way
that the angle rpq is between π/4 and 3π/4. (The choice of these angles
is somewhat arbitrary: all we need is that the angle rpq is bounded away
from 0 and π.) Write ℓij for the perpendicular bisector of ij, and S for the
bi-infinite strip of width ||p − q|| centered on ℓpq. For ease of explanation,
suppose that the segment pq is horizontal, so that S is vertical, and that r lies
above the line through p and q. ℓpr and ℓqr intersect the boundary ∂S of S in
four points, the highest of which lies at distance at most h = 110/t from pq.
Write R ⊂ S for the rectangle with base pq and height 2h (containing all four
intersections above), and R′ ⊂ S for its reflection in pq. A good configuration
must also have no black points in the rectangular region R ∪ R′. Note that
the area of R ∪R′ is 440, so that, conditioned on the locations of p, q and r,
the condition on the black points is satisfied with probability e−440. Now, in
a good configuration, given the position of p, q is constrained to lie in some
annulus centered at p of area 2πt dt, with n−1/12 < t < 1, and then r must
lie in a region of area 7500π/4t2. Consequently, writing X for the number
of good configurations in the fixed disc Bn of area n, there exist absolute
constants C and C ′ such that

E(X) ≥ C

∫ 1

n−1/12

λn · λt−2 · λt dt = C ′λ3n log n → ∞.

Second, we show that we can apply the second moment method to prove
that, with high probability, X ≥ 1. For this to work, we require an upper
bound on λ; it will suffice to assume λ3n → 0. Since pλ(n) is decreasing in λ,
if we can prove that pλ(n) → 0 under the more restrictive hypotheses, the full
result will follow. Tessellate Bn with squares of side length n1/6, and color a
square Si black if both of its “coordinates” are even and if every point of Si

lies at distance at least n1/6 from ∂Bn. (Thus, away from the boundary, one
out of every four squares is black.) We will only consider the black squares,
which we label S1, S2, . . . , SN . Let the apex of a good configuration be the
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Figure 1: A good configuration. The dashed triangle is the Voronoi cell for
the point s′ slightly above the midpoint of pq.
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point furthest from the opposite side (r, in the above notation), and write Xi

for the number of good configurations with apex in Si. With high probability,
each Xi will be either zero or one. Moreover, since the maximum diameter
of a good configuration is O(n1/12) by construction, the Xi are independent
and identically distributed. Let X ′ =

∑
Xi. Then E(X ′) → ∞ as above,

and since, for each i,

P(Xi ≥ 1) = O(log n/n2/3) → 0, E(X2
i ) ∼ E(Xi), E(Xi) → 0,

it follows that

Var(X ′)

E(X ′)
=

Var(X1)

E(X1)
=

E(X2
1 )− E(X1)

2

E(X1)
∼ E(X1)− E(X1)

2

E(X1)
→ 1

as n → ∞, and so by Chebyshev’s inequality

P(X = 0) ≤ P(X ′ = 0) ≤ Var(X ′)

E(X ′)2
∼ 1

E(X ′)
→ 0.

Finally, we explain why the presence of a good configuration prohibits
full coverage. As above, suppose that pq is horizontal, and that r, and hence
ℓpr and ℓqr, lie above pq. The idea is that part of ℓpq lying just above pq will
be uncovered. Write m0 for the midpoint of pq, and ms for the point of ℓpq
at height s above pq. Any black points lying in S above pq and outside R
are much closer to r than to p or q, and so their corresponding discs cannot
cover m0 or ms, for s ∼ C/t. Write q′ for the intersection of ℓpr with ∂S
lying above p, p′ for the intersection of ℓqr with ∂S lying above q, and r′ for
the midpoint of the opposite side of R′ from pq. The points p′, q′ and r′ are
the best locations to place black points for the purposes of covering points
ms, for small s. However, even their corresponding black discs fail to cover
ms′ , for suitable s′. Specifically, write

Dp = D(p′, ||p′ − q||) = D(p′, ||p′ − r||),
Dq = D(q′, ||q′ − p||) = D(q′, ||q′ − r||),
Dr = D(r′, ||r′ − p||) = D(r′, ||r′ − q||).

If the distance of i′ from pq is ci/t, then the heights ofDp andDq abovem0 are
asymptotically t3/8ci, and Dr only covers ms for s < t3/8cr (asymptotically).
However, by construction,

cr ≥ 3
2
max{cp, cq},
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so the point ms′ , for s
′ = t3/7cr, will be uncovered by Dp ∪ Dq ∪ Dr. Hav-

ing identified s′, it is straightforward to check that the Voronoi cell V of
{s′, p, q, r} (shown dashed in Figure 1) is entirely contained in R∪R′. There-
fore, s′ will not be covered by Aλ, since, by construction, V ⊂ R ∪R′ is free
of black points; all black discs will be stopped by p, q, r, or another red point,
before they cover s′.

Here is a rough intuitive explanation of the proof of Theorem 2. For
i = 0, 1, 2, . . ., let us say that a good configuration is of type i if the parameter
t = ||p − q|| satisfies 2−(i+1) ≤ t < 2−i. Close to the threshold, for each i,
there will be O(λ3n) = o(1) good configurations of type i, so that, for fixed i,
the probability that a good configuration of type i exists in Bn tends to zero.
However, there are C log n possible types, and so, under the hypotheses of
Theorem 2, some good configuration will occur in Bn with high probability.

The next theorem shows that if the expected number of good configura-
tions tends to zero, then coverage does in fact occur.

Theorem 3. If λ3n log n → 0, then pλ(n) → 1.

Proof. Suppose that n → ∞ and also that λ3n log n → 0. First, we show
that we need only worry about coverage of parts of Bn which are close (within
distance

√
8 log n) to a red point. To do this, we tessellate Bn with squares of

side length r =
√
log n. (Some of the squares will not lie entirely inside Bn,

but this does not cause problems.) The probability that any small square
of the tessellation contains no black point is e− logn = n−1. Since there are
∼ n/ log n such squares, the expected number of them containing no black
points is asymptotically 1/ log n → 0. Consequently, with high probability,
every small square contains a black point. Now fix a small square S. If no
point of S is within distance

√
2 log n of a red point, and if S contains a black

point, then all of S will be covered by Aλ. Therefore, with high probability,
any point of Bn at distance more than

√
8 log n from all red points will be

covered by Aλ, and we may assume this from now on. (Note that we do not
condition on the event that every small square contains a black point, as this
would affect our estimates. Instead, our arguments below show that when
certain conditions are met, coverage occurs, except possibly when some small
square contains no black point; however, this last event has probability o(1),
so coverage still occurs with high probability.)

It remains to show that the regions of Bn within distance
√
8 log n from a

red point are covered by Aλ. Color such regions yellow. In order to facilitate
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a division into cases, let us construct a graph G = G(n,P ′) on the red points
by joining two red points if they lie within distance R = R(n) =

√
128 log n

of each other. (Such a graph is usually called a random geometric graph.) A
routine calculation (see for instance [10]) shows that, with high probability,
the connected components of G consist of o(n2/3(log n)−1/3) isolated vertices,
o(n1/3(log n)1/3) edges, o(log n) triangles, and o(log n) paths of length 2 (i.e.,
paths with 2 edges). This means that each yellow region is associated with
either an isolated red vertex, a red edge, a red triangle, or a red path of
length 2. We deal with each of these in turn; our argument for triangles will
also cover the case for paths of length 2, which we consider as triangles with
one “long” edge.

Isolated vertices. Consider the circles of radii
√
8 log n and

√
32 log n

around each isolated red point, and divide the annulus between these cir-
cles into 6 equal “sectors”, each of area 4π log n. With high probability,
there is a black point inside each sector, and this black point is closer to
the isolated vertex than to any other red point. But then the yellow region
surrounding the isolated vertex is covered by Aλ.

Edges. For a fixed edge e = pq ∈ E(G), where we may assume p = (0, 0)
and q = (t, 0), consider the circles of radii

√
8 log n and

√
32 log n around p

and q. Divide each half-annulus, between two concentric circles and lying
outside the “critical strip” S = [0, t] × R, into 3 equal sectors, each of area
4π log n. With high probability, there is a black point inside each sector,
and this black point is closer to p or q than to any other red point. Thus
the yellow regions outside S are covered by Aλ. However, coverage of the
yellow regions inside the critical strip S is not guaranteed. Indeed, the proof
of Theorem 2 shows that such coverage is threatened by the presence of red
points at distance ∼ C/t from e. G contains edges almost as short as n−1/6,
so such points may lie almost as far as n1/6 from e, almost as much as the
typical distance between red points.

We need to show that the edge e = pq is, with high probability, covered
from both above and below, so that the yellow regions inside S both above
and below e are covered by Aλ. It will be sufficient to show that e is covered
from above with high probability; an analogous argument will then deal with
coverage from below. Let r be the closest point to p, under the condition
that the angle rpq is between 0 and π (thus, in this case, r is “above” e), and
write s = ||r− p||. With notation as in the proof of Theorem 2, the lines ℓpr
and ℓqr intersect at height h ≥ s

2
√
3
above e (see Figure 2 – the worst case is

when points p, q and r form an equilateral triangle, because the length of pr
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Figure 2: Covering the edge pq from above

is always bigger than that of pq). Now let ℓ be the line parallel to e, lying
at height

√
2 log n above e, and let T be the rectangle with base of length t

2

lying on ℓ, of height

h

2
−

√
2 log n ≥ s

4
√
3
−

√
2 log n ≥ s

60
,

and such that T is bisected by ℓpq. Every point of T lies below both ℓpr and
ℓqr, and so is closer to p and q than r. Denoting the left and right halves of
T by L and R respectively, we see that if each of L and R contains a black
point, then the entire yellow region inside S and above e will be covered
by the discs centered at these two points. But, with probability at least
1− 2e−st/240, L and R each do contain a black point. Therefore, there exist
constants C and C ′ such that the expected number Y of edges not covered
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from above can be bounded by

E(Y ) ≤ o(1) + Cλn

∫ √
128 logn

n−1/6

λt

∫ ∞

√
128 logn

λse−st/240 ds dt

≤ o(1) + Cλn

∫ √
128 logn

n−1/6

λt

∫ ∞

0

λxt−2e−x/240 dx dt

= o(1) + Cλ3n

∫ √
128 logn

n−1/6

t−1

∫ ∞

0

xe−x/240 dx dt

= o(1) + C ′λ3n log n → 0.

Consequently, with high probability, the yellow regions close to all the edges
in G are completely covered by Aλ.

Triangles. We expect o(log n) triangles T in G, and we will classify them
by the length x of their smallest sides. In the first case, illustrated in the
first two parts of Figure 3, no angle of T is greater than 9

10
π. Consider the

disc D, centered at the circumcenter cT of T , of radius x
4
. If each of the

three sectors of D formed from the perpendicular bisectors of the sides of T
contains a black point, then the entire interior of T is covered by Aλ. (For
instance, suppose that the sector corresponding to p contains a black point
b; it then follows that the (closure of the) disc centered at b covers p, cT , and
both midpoints mpq and mpr of pq and pr, so that the same closed disc covers
the quadrilateral pmpqcTmpr, by convexity. The exterior of T is easily seen
to be covered with high probability.) But each of these sectors has area at
least π

20
· x2

16
= πx2

320
, so that the expected number T1 of such triangles which

are not entirely covered can be bounded by

E(T1) ≤ o(1) + Cλ2n log n

∫ √
128 logn

n−1/6

λxe−πx2/320 dx

≤ o(1) + Cλ3n log n

∫ ∞

0

xe−πx2/320 dx

= o(1) + C ′λ3n log n → 0,

for some constants C and C ′. In the second case, where one angle of T , say the
angle at p, is greater than 9

10
π, we consider the two rectangles whose centers

lie on ℓpq and ℓpr, halfway from pq (respectively pr) to the circumcenter of T ,
whose bases are parallel to the respective sides pq and pr, and whose heights
and widths are x

10
and x

3
respectively (see the third part of Figure 3). If
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each half of each of these rectangles contains a black point, the interior of T
is covered, and so the expected number T2 of such triangles which are not
entirely covered can be bounded by

E(T2) ≤ o(1) + Cλ2n log n

∫ √
128 logn

n−1/6

λxe−πx2/60 dx

≤ o(1) + Cλ3n log n

∫ ∞

0

xe−πx2/60 dx

= o(1) + C ′λ3n log n → 0,

for some constants C and C ′. Therefore, with high probability, the interiors
of all the triangles in G are covered by Aλ, completing the proof of the
theorem.

p

q r

p

q r

p

q
r

Figure 3: Covering the interior of triangle pqr

3 Proof of the main result

More careful estimates, combined with the Stein-Chen method [1], yield the
following more precise result, which also shows that good configurations are
essentially the only obstructions to coverage.

Theorem 4. If λ3n log n = y, then, for sufficiently large n,

e−8π2y ≤ pλ(n) ≤ e−
2
3
π2y.
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Proof. Suppose that λ3n log n = y. We follow the strategy of the proof of
Theorem 3, with a few modifications. Define the graph G = G(n,P ′) on
the red points as in that proof. With high probability, the yellow regions
associated with isolated vertices are still covered by black discs, even at this
higher range of values of λ.

The first step is to show that the yellow regions inside and close to trian-
gles in G are also still covered, again at this higher range of values of λ, and
with high probability. This requires a different argument from before. This
time, we overlay each triangle T in G with a tessellation TT of side length
(log n)1/5 in such a way that TT covers T and extends for at least 10 side
lengths out from the perimeter of T . Since we only expect O(log n) triangles
in G, and each triangle has area O(log n), with high probability there will be
at most C(log n)8/5 squares in the tessellations, each of which will contain no
black points with probability exp(−(log n)2/5), so, with high probability, ev-
ery square of every tessellation will contain a black point. Therefore, as in the
proof of Theorem 3, all points inside any TT not within distance

√
8(log n)1/5

of a red point are covered by Aλ. Accordingly, we color the regions within
distance

√
8(log n)1/5 of such a red point orange.

With this in mind, we now consider a new graph G′, whose vertex set
consists of all vertices of all the triangles of G. We join two red points if their
distance is at most R′ = R′(n) =

√
128(log n)1/5. With high probability,

G′ contains no triangles, since the expected number of triangles in G′ is
Cλn ·λ(log n)2/5 ·λ(log n)2/5 = Cλ3n(log n)4/5 → 0. Each triangle in G splits
in G′ into either three isolated vertices, or an edge and an isolated vertex. As
in the proof of Theorem 3, the orange regions associated with all the “new”
isolated vertices are all covered by Aλ, with high probability – note that there
are only O(log n) such vertices, and the associated sectors are empty with
probability exp(−C(log n)2/5). Thus we have only to deal with the orange
regions associated with edges in G′, and indeed only the parts of those orange
regions “above and below” such edges, as before.

The expected number of triangles inG with one edge shorter than 1/
√
log n

is Cλn · λ(log n)−1 · λ(log n) = Cλ3n → 0, so with high probability all edges
in G′ have lengths longer than 1/

√
log n. Consequently, the expected number

Y ′ of edges of G′ whose orange regions are not covered can by bounded, as
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in the proof of Theorem 3, by

E(Y ′) ≤ Cλn

∫ √
128(logn)1/5

(logn)−1/2

λt

∫ ∞

√
128(logn)1/5

λse−st/240 ds dt

≤ C ′λ3n log log n → 0.

Consequently, with high probability, all the orange regions are covered, so
that all the uncovered regions in Bn are associated with edges in G.

The detailed strategy for the remainder of the proof is as follows. First,
we need to estimate the frequency of uncovered edges (i.e., edges in G whose
associated yellow regions are uncovered by black discs). Suppose that this
frequency is such that we expect cy uncovered edges in Bn. Then these
uncovered edges should be well-approximated by a Poisson process in Bn,
and so the probability that there will be no uncovered edges should tend
to e−cy. But, following the above remarks, this is also the probability of
coverage.

Unfortunately, estimating c itself seems quite hard, since, in contrast to
the one-dimensional case, there is no simple necessary and sufficient condition
for an edge of G to be covered by Aλ. The best we can do is describe a
simple necessary condition for coverage (edges not satisfying this condition
are termed Type 2 edges), and a corresponding simple sufficient condition for
coverage (edges not satisfying such a condition are Type 1 edges). Type 2
edges provide a lower bound on c, and hence an upper bound on pλ(n), while
Type 1 edges provide an upper bound on c, and a lower bound on pλ(n).
To summarize, denoting the sets of Type 1, Type 2, and uncovered edges in
Bn by T1, T2, and U , we have T2 ⊂ U ⊂ T1. We now turn to the precise
descriptions of these types of edge.

Type 1 edges. With reference to Figures 1 and 2, let R be the rectangle
whose base is parallel to pq and lies at height

√
2 log n above pq, whose top is

parallel to pq and just touches the lowest of the four intersections of ℓpr and
ℓqr with S, and whose sides are those of S itself. A sufficient condition for
coverage of pq is that pq is covered from above, that is, there are sufficiently
many black points in R to cover the yellow region above pq; the yellow region
below pq is covered, for all such edges in Bn, with high probability. (This
condition is not necessary, since black points below pq might by themselves
cover the yellow regions on both sides.) We can estimate the number of
Type 1 configurations by “projecting” the black points in R to the edge
pq, resulting in a one-dimensional process on an interval of length 1 whose
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intensity is just the area of R, and applying (the proof of) Theorem 1. We
will call a rectangle R whose black points do not cover pq from above a blue
rectangle; Type 1 edges are those associated with blue rectangles.

Type 2 edges. Again with reference to Figures 1 and 2, let V be the
dotted Voronoi cell corresponding to a point s′, where s′ has been chosen to
minimize the area of V (and thus maximize the probability that V is free of
black points). A necessary condition for coverage of the yellow region above
pq is coverage of the point s′, and this occurs if and only if a black point lies
in V . (This condition is clearly not sufficient.) A rough calculation shows
that s′, as defined in the proof of Theorem 2, is already almost optimal; the
point on ℓpq which minimizes the area of V is at height asymptotically t2/8u
above pq, where ||p− q|| = t, and where the circumcenter of pqr is at height
u above pq. For this choice of s′, V has area approximately tu, and so is free
of black points with probability about e−tu. Call a Voronoi cell V without
black points a green triangle; Type 2 configurations are those associated with
green triangles.

When estimating the frequencies of Type 1 and Type 2 edges, we may
assume that

n−1/6 log n < t < (log n)−1

since edges not satisfying this restriction comprise an asymptotically negli-
gible fraction of both types of edge. Indeed, the expected number of edges
of either type with n−1/6 < t < n−1/6 log n can be bounded by

Cλn

∫ n−1/6 logn

n−1/6

λt

∫ ∞

√
128 logn

λse−st/240 ds dt = C ′λ3n log log n → 0,

while the expected number of those with (log n)−1 < t <
√
128 log n can be

bounded by

Cλn

∫ √
128 logn

(logn)−1

λt

∫ ∞

√
128 logn

λse−st/240 ds dt = C ′′λ3n log log n → 0.

The next step is to show that the edges of both types are well-approximated
by Poisson processes, so that, in particular, if we expect c1y edges of Type
1, and c2y edges of Type 2, we will have e−c1y ≤ pλ(n) ≤ e−c2y. For this we
use the Stein-Chen method [1], in the following form (taken from [3]).
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Proposition 5. Let ξ1, ξ2, . . . be a countable collection of independent ran-
dom variables, and let Z1, Z2, . . . be a countable collection of Bernoulli ran-
dom variables, where Zi is a function of the values of ξj, j ∈ Si. Suppose
that

∑
i E(Zi) = µ, and let

b1 =
∑

i,j : Si∩Sj ̸=∅

E(Zi)E(Zj),

b2 =
∑

i,j : Si∩Sj ̸=∅, i ̸=j

E(ZiZj)

and Z =
∑

i Zi. Then for all r,

|P(Z = r)− e−µµr/r! | ≤ 1− e−µ

µ
(b1 + b2).

(Theorem 1 in [1] includes another term b3 that bounds dependency when
Si ∩ Sj = ∅, but in our case, as in [3], b3 = 0.)

To make the collection of events countable, we proceed as in [3], dividing
Bn up into a very fine grid, and moving all points of P and P ′ to their nearest
grid point. For fixed n and y, we can make the number of both types of edge
in this discrete version equal to the number in the original with probability
arbitrarily close to 1. The random variables ξi record whether or not the ith

grid point is occupied for each of P and P ′, and, for every grid point i, we
introduce a variable Zi indicating whether a Type 1 (or Type 2) edge exists
with its midpoint at i. The set Si can be taken to be the set of grid points
within distance n1/6(log n)−1/2 of i.

The first thing to check is that, with high probability, the Zi really are
Bernoulli random variables. For a pair of, say, Type 1 configurations to share
a common edge, we require four red points p, q, r and s, such that q is within
distance t of p, and then both r and s are within distance 1/t of p, for t in
the range specified above. But the expected number of such configurations
is certainly at most Cλ3n log n · λn1/3 → 0.

We are interested in the case where µ is a positive constant, so we must
show that b1 and b2 tend to zero as n → ∞. First, we have

b1 =
∑
i

E(Zi)
∑

j:Si∩Sj ̸=∅

E(Zj) ≤ Cµ · µ n

n1/3(log n)−1
→ 0.

Second, for some pair Zi and Zj with Si ∩Sj ̸= ∅ to both equal 1, we require
the presence of five red points p, p′, q, q′ and r, all within distance n1/6 of each
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other, such that p and q are also within distance t, and r is within distance
1/t of p, for t in the range specified above. The expected number of such
configurations is certainly at most Cλ3n log n · λn1/3 · λn1/3 → 0, so b2 → 0
also.

It remains to calculate c1 and c2. Suppose that the circumcenter of tri-
angle pqr lies at height between u and u + du above pq. This means that
r must lie in an asymmetrical annulus of area 2πu du. (Note that we have
overcounted the number of edges pq by a factor of 2, which we correct for by
assuming that u is “above” pq.) Under these circumstances, the rectangle
R has area (1 + o(1))ut, and will be blue with probability asymptotically
(1+ut/2)e−ut/2, while the Voronoi cell V also has area (1+ o(1))ut, and will
be green with probability asymptotically e−ut. (All asymptotic statements
and notation are as n → ∞.) Consequently, making the substitution x = ut
in both integrals,

E(|T1|) ∼ λn

∫ (logn)−1

n−1/6 logn

2πλt

∫ ∞

√
128 logn

2πλu

(
1 +

ut

2

)
e−ut/2 du dt

= 4π2λ3n

∫ (logn)−1

n−1/6 logn

1

t
dt

∫ ∞

t
√
128 logn

x
(
1 +

x

2

)
e−x/2 dx

∼ 4π2λ3n

∫ (logn)−1

n−1/6 logn

1

t
dt

∫ ∞

0

x
(
1 +

x

2

)
e−x/2 dx

∼ 8π2λ3n log n = 8π2y,

and

E(|T2|) ∼ λn

∫ (logn)−1

n−1/6 logn

2πλt

∫ ∞

√
128 logn

2πλue−ut du dt

= 4π2λ3n

∫ (logn)−1

n−1/6 logn

1

t
dt

∫ ∞

t
√
128 logn

xe−x dx

∼ 4π2λ3n

∫ (logn)−1

n−1/6 logn

1

t
dt

∫ ∞

0

xe−x dx

∼ 2

3
π2λ3n log n =

2

3
π2y,

completing the argument.

The variable x in the above calculation can be interpreted as the amount
by which a “generic” configuration has been “stretched”; the frequency of
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blue rectangles and green triangles corresponding to a fixed value of t and
with x ≤ ut ≤ x+ dx is exponentially decreasing in x.

As explained above, it does seem likely that there exists a single constant
c such that if λ3n log n = y then pλ(n) → e−cy. It might even be possible
to provide an explicit expression for c. Finally, it would be interesting to
investigate the problem in higher dimensions.
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