Galois Theory: Projects
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Only the last of these topics requires a knowledge of Galois theory, although all of them
are related to the course in some way. As you can see, they are very different in character
— indeed, the material in the first, second, third and fourth projects dates from the 17th,
18th, 19th and 20th century, respectively. The first two are easier, and are described
clearly and thoroughly in the references given, while the third, though described very well
in both references, is hard, and the fourth is somewhat complicated. I will take all this into
account, so choose a project you like. We'll find some way of dealing with conflicts,
should they arise. The aim is to have 2 people to each project: you are each required to
read and understand the proof(s), and each of you should present something in class.

The fundamental theorem on symmetric polynomials

The theorem states that every symmetric polynomial p(xq,...,z,) in n variables can
be expressed as a polynomial P(sy,...,s,) in the elementary symmetric polynomials

s1(1, .. my) = sz
So(T1y ..o xy) = Zmixj

Sp(T1, .. Ty) = T1Xo- - Ty

There is a proof by induction in Chapter 6 of Stillwell’s book (Exercise 6.5.1), and a proof
using Galois theory in Chapter 9 (Exercise 9.3.4). Present whichever proof you like.

The result goes back to Newton and Girard, and is a cornerstone of classical Galois
theory. Galois used it to prove the primitive element theorem, Lemme III of his memoir.
This proof is also part of the project. Edwards [1] contains an expanded version of Galois’
sketch.
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The construction of the regular heptadecagon

The constructions of the equilateral triangle and regular pentagon appear in Euclid’s
Elements (in Books I and IV, respectively). The next major advance was made in 1796 by
Gauss, who proved that it is possible to construct the regular seventeen-sided polygon. All
these constructions are with straightedge and compass (see Section 1.2 of Stillwell’s book
for a precise definition). Gauss was so proud of his discovery that he requested that a
regular seventeen-sided polygon be inscribed on his tombstone.

The relevant Galois theory is described in Section 9.8 of Stillwell’s book; for the con-
struction itself, see Chapter 5 of Hardy and Wright [1], or Chapter 19 of Stewart [2].
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The transcendence of 7

The three great construction problems of antiquity were to square the circle, duplicate
the cube, and trisect the angle, with straightedge and compass. All three are impossible.
The second and third were shown to be so by Wantzel in 1837, while the first is rendered
impossible by a little field theory (which I will cover in class) and the transcendence of
7. This last fact was finally established by Lindemann in 1882, with an astonishing proof.
[an Stewart wrote that all mathematicians should see it at least once in their lives, while
Felix Klein wrote in 1893:

The problem has thus been reduced to such simple terms that the proofs for the transcendency
of e and 7 should henceforth be introduced into university teaching everywhere.



Stewart’s book [2] contains the whole proof, while Klein’s lecture [1] gives a good
overview of the argument. The proof itself uses the fundamental theorem on symmetric
polynomials, but is otherwise unrelated to Galois Theory (as far as I know). I've included
it as a project because I share the sentiments above.
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Computing the Galois group of a quartic

If p € Q[z] is an irreducible quartic with splitting field FF C C, then Gal(F : Q) is
isomorphic to a transitive subgroup of S;. There are 5 such subgroups, so how do we tell,
given the coefficients of p, which one is the Galois group? Galois’ memoir itself actually
contains an algorithm (or a sketch of one), but the paper below provides a simpler method.

[1] L. Kappe and B. Warren, An elementary test for the Galois group of a quartic polyno-
mial, American Mathematical Monthly 96 (1989), 133-137.




