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Abstract

We consider a variant of a classical coverage process, the boolean model in Rd. Previous
efforts have focused on convergence of the unoccupied region containing the origin to a well
studied limit C. We study the intersection of sets centered at points of a Poisson point process
confined to the unit ball. Using a coupling between the intersection model and the original
boolean model, we show that the scaled intersection converges weakly to the same limit C.
Along the way, we present some tools for studying statistics of a class of intersection models.

1 Introduction

The Boolean model is a geometric model for random sets in space: for example, comets striking the
moon, or antibodies attaching to a virus. One starts with a Poisson point process X of intensity λ
on Rd (see Appendix A for some background on Poisson processes), and, for simplicity, some fixed
set S. The Boolean model refers to the set

Bλ,S =
⋃
X∈X

(X + S), (1.1)

where, for x ∈ Rd,

x+ S = {x+ y : y ∈ S}. (1.2)

Conditioning on the (positive probability) event {0 /∈ Bλ,S}, one then studies, among other things,
the uncovered component of Rd containing 0, known as the Crofton cell.

The Boolean model was first defined and studied in the 1960s by E.N. Gilbert, who investigated
both percolation [13] and coverage [14]. Gilbert’s results (from both papers) were improved by
Hall [16, 17], and Hall’s result on coverage [16] was improved and generalized by Janson [20] and
Molchanov [28]. The books by Meester and Roy [24] and Hall [18] are standard references for the
percolation and coverage processes respectively, and the more recent books by Haenggi [19] and
Franceschetti and Meester [12] cover applications to wireless networks (the motivating example
from [13]).
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There are a number of well-studied cousins of the Boolean model. One such class of models
is tessellations. For example, consider a hyperplane tessellation of intensity λ on Rd. Namely,
let R = {Rn : n ∈ N} denote a Poisson point process with intensity λ – or, more generally, with
intensity measure ν – on R, and let θn, n ∈ N, be iid uniform over the d−1 dimensional unit sphere,
independent of R. The corresponding Poisson field H refers to the set of hyperplanes Hn given by

Hn = {x ∈ Rd : x · θn = Rn}, (1.3)

i.e., Hn is the hyperplane passing through the point Rnθn, with normal vector parallel to θn. Note
that, on average, 2λ hyperplanes intersect the unit sphere in this model. The analogous object in
this context is the connected component of the tessellation containing 0, denoted Dλ

0 .

Hyperplane tessellations have a history dating back to the 19th century. Crofton’s formula (1868)
expresses the length of a curve C in terms of the expected number of times C meets a random
line, i.e., the expected number of times C intersects a random line tessellation. Generalizations
of Crofton’s formula led to the development of Integral Geometry [31]. Meanwhile, inspired by a
question of Niels Bohr on cloud chamber tracks, Goudsmit in 1945 [15] computed the variance of
the cell size in a random line tessellation, and Miles in 1964 [26, 27] initiated the systematic study
of random line tessellations (with potential applications to papermaking in mind). We will make
use of Goudsmit’s result later. Calka’s recent survey article [6] gives an excellent overview of the
field.

We will also use a slightly different tessellation model: tessellation by spheres, rather than
hyperplanes. Let X be a Poisson point process of intensity λ on Rd, and let S = ∂B = {x ∈ Rd :
||x||2 = 1} denote the boundary of the unit ball B in Rd. Then the set

⋃
X∈X

(X + S) (1.4)

partitions Rd into a union of disjoint connected components. As before, it is common to study the
connected component of this tessellation containing the origin, denoted Eλ0 .

A result due to Michel and Paroux [25] (see also [7]) gives a common scaling limit for these sets:

Theorem 1.1. Let Cλ0 , Dλ
0 and Eλ0 denote the Crofton cell in the boolean model (with S = B), and

the connected components containing the origin in the hyperplane and sphere tessellation models,
respectively. These three models have a common scaling limit in distribution:

lim
λ→∞

SdλC
λ
0 ∼ lim

λ→∞
2λDλ

0 ∼ lim
λ→∞

2SdλE
λ
0 ∼ 2C, (1.5)

where Sd is the surface area measure of S = ∂B, C is the law of the normalized Crofton cell D1
0,

and ∼ denotes equality in distribution.
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The scaling in this theorem is nontrivial and deserves some comment. Consider first the tessel-
lation models. As λ→∞, the expected volume of the connected component containing the origin
is inversely proportional to the expected number of connected components in Bε = {x : ||x|| < ε}.
This latter quantity is in turn proportional to the number of points of intersection (of spheres or
hyperplanes) in Bε. The number of such intersection points scales as λd, since each intersection
point is determined by d spheres (respectively hyperplanes), so the expected volume of the Crofton
cell scales as λ−d, leading to a linear scale factor of 1/λ. Finally, the constants can be determined
by computing the expected number of spheres (respectively hyperplanes) meeting Bε in each of the
three models: for Cλ0 , Dλ

0 and Eλ0 these are asymptotically Sdλε, 2λε and 2Sdλε respectively.

Our contribution is to introduce a new model to this group, which we term the boolean inter-
section model. Let B denote the closed unit ball in Rd, and let Cλ be a Poisson point process with
intensity λ on B. (We will focus on the uniform intensity case, and discuss in Section 3 some ideas
that apply for general intensity measures). Let

Iλ = B ∩

 ⋂
C∈Cλ

(C + B)

 (1.6)

be the intersection of copies of B shifted by C ∈ Cλ. By definition, set Iλ = B if Cλ = ∅. Note that
for each λ, Iλ is a convex (connected) set contained in B, containing 0. Our goal will be to show
that Iλ shares the same limit as the Boolean and Poisson hyperplane tessellation processes, up to
a constant.

Theorem 1.2. Let C denote the law of the normalized Crofton cell D1
0. The following distributional

convergence holds:

lim
λ→∞

SdλI
λ ∼ 2C. (1.7)

Write |I| for the Lebesgue measure of a measurable set I ⊂ Rd, and ωd = vol(B) = 1
dSd.

Proposition 1.3. The limiting volume of the intersection is given by

lim
λ→∞

λdE|Iλ| = d!ωd

ωdd−1

. (1.8)

For example, when d = 2, limλ→∞ λ
2E|Iλ| = π

2 .

One proof of this fact is via (1.7), and an appeal to classical results on the statistics of the
Crofton cell C [15]; we outline the details in Section 6. We give an alternative proof based on
general results for the intersection model in Section 3. Similar formulas hold for a more general
class of boolean intersection models, namely where the underlying point process is not uniform, or
the balls are exchanged for other compact sets. For simplicity we focus on the case of balls of fixed
radius, and comment on generalizations in Section 3.2. Additionally, one can formulate all these
results using ‘fixed count’ versions of these models: that is, instead of using an underlying Poisson
process, for each n define In as the intersection of n iid translations of B. This model also shares
the Crofton cell D1

0 as a scaling limit.
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1.1 Random variables in the space of closed sets

Our main result, Theorem 1.2, refers to a convergence of random sets. The usual modes of con-
vergence – in law, in probability, and in Lp – are trickier to define for random sets. We follow the
approach taken in [7] and most of the existing literature, namely via the Hausdorff metric dH on
the space E of closed subsets of Rd. Namely, if Xn and X are defined on the same probability
space, we say Xn → X in probability if for every ε > 0,

P(dH(Xn, X) > ε)→ 0 as n→∞. (1.9)

Our proof of Theorem 1.2 gives an explicit coupling between the intersection model and the Crofton
cell, under which (1.9) holds.

2 Overview of results

Although our main result is Theorem 1.2, we will present two different approaches to its corollary,
Proposition 1.3. The first is direct, and appears in Section 3. The second is via Theorem 1.2, and
occupies Sections 4, 5 and 6. Below, we summarize each approach in turn.

In Section 3, we first consider a single ball B, whose center lies inside the unit ball B. A simple
volume calculation lets us estimate (in Proposition 3.1) the probability that B contains the line
segment [0, r] on the positive x-axis. Next, we consider the full model, in which unit balls are
centered at points of a Poisson process of intensity λ inside B, forming an intersection Iλ. Write
Rλ for the radius of Iλ in the positive x direction (for instance). Proposition 3.1, together with
an approximation argument, allows us to show that the suitably scaled radius Rλ converges in
distribution to an exponential random variable of mean one. Finally, Proposition 3.4 relates the
expected volume of Iλ to the dth moment of Rλ, completing the calculation of E|Iλ| and proving
Proposition 1.3.

As part of this analysis, we also prove a parallel series of results for a related hyperplane model
Kλ, which approximates the ball model Iλ near the origin.

Section 4 contains some probabilistic and geometric lemmas that we will use in Section 5.

In Section 5, we prove Theorem 1.2. The main idea is to couple the intersection model with a
sphere tessellation model. With Iλ as above, and Jλ defined as the cell containing the origin in an
appropriately scaled sphere tessellation model, we show that, in our coupling, the scaled Hausdorff
distance between Iλ and Jλ converges to 0 almost surely as λ→∞. To achieve this, we carry out
the following steps:

1. Show that only points of the Poisson process close to the boundary – namely, within distance

ελ = log2 λ
λ of ∂B – contribute to the shape of Iλ (asymptotically almost surely as λ → ∞).

We use a coupon-collector type process on ∂B as a test: if there are points of Cλ close to ∂B
that are “spread out enough” (in terms of angle), then Iλ must be contained within a small
ball at the origin.
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2. Match spheres close to ∂B from the intersection model with spheres close to ∂B from the
tessellation model. Since some of the sphere centers in the tessellation model land outside B,
while the sphere centers in the intersection model are confined to B, we must match them by
shifting. We accordingly identify each point Rθ of the underlying tessellation process (with
R ∈ (1, 1 + ελ) and θ ∈ ∂B) with the point (R− 2)θ in the intersection process. The spheres
centered at these two points have almost the same effect on Jλ, except that one makes a
‘concave’ boundary and the other a ‘convex’ boundary.

3. Show that the error in carrying out Step 2, in terms of the Hausdorff distance between the
suitably scaled sets Iλ and Jλ, is negligible. This involves a careful coupling between the
underlying point processes: since we scale everything by a factor of λ, it is necessary to have
an error of order o(λ−1), not just o(1).

Finally, in Section 6, we derive Proposition 1.3 from Theorem 1.2, using the d-dimensional
version of Goudsmit’s 1945 calculation [15] for the area of the Crofton cell. Although the relevant
formulas appear in the work of Matheron [23] (Chapter 6), our treatment is short and self contained.

3 Statistics for the intersection model

To warm up, consider the following generic intersection process on R. Let Cλ be a Poisson process
with intensity λ on [−1, 1], and define

U = Uλ = [−1, 1] ∩

 ⋂
c∈Cλ

c+ [−1, 1]

 (3.1)

where c + [−1, 1] = [c − 1, c + 1] for c ∈ R, with the convention that U = [−1, 1] if Cλ = ∅. U
is always an interval, so it is determined by supU and inf U . The distribution of the infimum
can be determined as follows. We have that inf U < −u if and only if max Cλ < 1 − u, which in
turn holds if and only if each element of Cλ is less than 1 − u, i.e., if no point of Cλ lies in the
interval [1−u, 1]. The latter event has probability e−λu, so − inf U is approximately distributed as
Exp(λ−1) as λ→∞.

Note that inf U is a function of Cλ ∩ [0, 1] and supU is a function of Cλ ∩ [−1, 0]; basic properties
of Poisson processes imply that inf U and supU are independent. Thus, as λ → ∞, the left and
right endpoints of U shrink to 0 independently, and

λ|Uλ| →d Exp(1) + Exp(1) ∼ Gamma(2, 1). (3.2)

3.1 Ball and hyperplane intersection models

We now explore some basic properties of two intersection models: the ball intersection model Iλ

(defined as in (1.6)), and an analogous intersection model with hyperplanes. Let C̃λ be a Poisson
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point process on B with intensity measure λ(ν × σ), where σ is surface-area measure on S and ν is
the measure supported on [0, 1] given by

ν(0, r) =
1

d

(
1− (1− r)d

)
. (3.3)

Define the hyperplane intersection model

Kλ = B ∩

 ⋂
C̃∈C̃λ

H(C̃)

 , (3.4)

where H(C̃) is the half-space normal to the vector C̃ and containing 0, i.e.,

H(C̃) = C̃ + {x ∈ Rd : x · C̃ < 0}. (3.5)

By definition, Kλ = B if C̃λ = ∅. The choice of ν is special, because it makes Kλ asymptotically
identical to the Boolean intersection model Iλ with copies of B defined earlier – the difference is
that the copies of the unit disk have been exchanged for half spaces. Indeed, placing a single disk B
with center ZΘ is like placing the half space H((Z−1)Θ); the difference is asymptotically negligible
as λ→∞. The error is quantified precisely in terms of the Hausdorff distance in Section 4. In this
section we work with both Kλ and Iλ simultaneously: the same ideas can be used to analyze both
models, with slightly different details.

For any θ ∈ S, define the ‘radius in the θ direction:’

Rλ(θ) = sup{t ∈ (0, 1) : tθ ∈ Iλ}, Qλ(θ) = sup{t ∈ (0, 1) : tθ ∈ Kλ}. (3.6)

The collections {Rλ(θ) : θ ∈ S} and {Qλ(θ) : θ ∈ S} each consist of identically distributed but
not independent variables: Rλ(θ) and Rλ(θ′) are not independent for θ 6= θ′ (except for the special
case θ′ = −θ). We simply write R = Rλ or Q = Qλ for the distribution of any one of the Rλ(θ) or
Qλ(θ), respectively. For r ∈ (0, 1), denote by F (r) and G(r) the probabilities

F (r) = P(re1 /∈ B), G(r) = P(re1 /∈ H), (3.7)

in which B = B + C, where C is a uniformly distributed point in B, H is an independent copy of
one of the random hyperplanes H(C̃), C̃ ∈ C̃λ, and ~e1 = (1, 0, . . . , 0) ∈ Rd . The functions F and G
are closely connected to the distributions of R and Q respectively, since for r ∈ (0, 1),

R > r ⇐⇒ r~e1 ∈ B + C for every C ∈ Cλ, (3.8)

and similarly for Q. Recall that ωd denotes the volume of the unit ball B in Rd. We have the
following formulas for F and G:
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Figure 1: The left diagram shows F (r) as the area of the teal set. Note that if any disk center
lies in the lune, then Iλ does not contain the point (r, 0). The error between the Lune and Wedge
sets is shown in blue: its area is negligible, and this gives a quick approximation of the area of the
lune. The analogous set for the hyperplane model is shown on the right: G(r) is the mass placed
on the red set by the probability measure 1

Sd
ν×σ. The fact that the red set is a circle follows from

elementary geometry: the angle in a semicircle is a right angle.

Proposition 3.1. Consider the intersection boolean models Iλ and Kλ in dimension d ≥ 1.

i. Let F be as in (3.7). For any r ∈ (0, 1),

F (r) =
1

ωd
|B \ (r ~e1 + B)| (3.9)

=
ωd−1

ωd
r −O(r3) as r → 0, (3.10)

where | · | denotes the volume (Lebesgue measure) in Rd. Moreover, for r ∈ [0, 1] we have
r ≤ CF (r) for some constant C depending only on the dimension.

ii. Let G be as in (3.7), and write S+ = {θ ∈ S : 〈θ, ~e1〉 > 0}. For any r ∈ (0, 1),

G(r) =
1

ωd

∫
S+
ν(0, r〈~e1, θ〉) dσ(θ) (3.11)

= ν × σ
(
r(~e1 + B)

2

)
(3.12)

=
(d− 1)ωd−1

dωd

d∑
k=1

(−1)1+k

(
d

k

)
Γ(d−1

2 )Γ(k+1
2 )

2Γ(k+d
2 )

rk (3.13)
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=
ωd−1

ωd
r −O(r2) as r → 0. (3.14)

Note that F and G have the same linear approximation near 0: this is a reflection of the fact
that the unit ball has smooth boundary, and hence locally is a hyperplane.

Proof. i. Write B = C + B where C is uniform over B, and note that for r ∈ (0, 1),

r ~e1 /∈ B ⇐⇒ ‖C − r ~e1‖ > 1 ⇐⇒ C ∈ B \ (r ~e1 + B). (3.15)

The first equality follows immediately. The shape Lune(r) = B \ (r ~e1 +B) is very close to the
shape

Wedge(r) = {θ + t~e1 : θ ∈ S−, t ∈ (0, r)} (3.16)

obtained by shifting half of S by r along the ~e1 axis, where S− = {θ ∈ S : 〈θ, ~e1〉 < 0}. The
volume of Wedge(r) is

|Wedge(r)| = ωd−1r. (3.17)

Note that Lune(r) = Wedge(r) ∩ B. The “error” set Wedge(r) \ Lune(r) is contained in a
region with triangular cross sections: in dimension d = 2, it has the form

Wedge(r) \ Lune(r) = {(x, y) ∈ R2 : x ∈ (0, r), y ∈ (
√

1− z2, 1)}, (3.18)

where z = min(x, r− x) (see Figure 1). In arbitrary dimension d, the set Wedge(r) \Lune(r)
is contained in the region formed by rotating the same region about the e1 axis (i.e., through
the copy of the (d − 2)-dimensional unit sphere lying in the hyperplane x1 = 0). Using the

expansion
√

1− s2 = 1− s2

2 +O(s4), it follows immediately that

|Wedge(r) \ Lune(r)| ≤ (d− 1)ωd−1
r3

16
+O(r5), (3.19)

proving both parts of the assertion.

ii. Write C = PΘ, where P ∈ [0, 1] is distributed according to ν, and Θ ∈ S is distributed
according to σ. The corresponding hyperplane, pinned at C, is given by

H = H(C) = {x : 〈x,Θ〉 ≤ P}, (3.20)

and thus

P(r~e1 /∈ H) = P(P < 〈r~e1,Θ〉). (3.21)

The first equality follows immediately by integrating. Moreover,

P < r〈~e1,Θ〉 ⇐⇒
∥∥∥PΘ− r

2
~e1

∥∥∥ < r

2
⇐⇒ C = PΘ ∈ r(~e1 + B)

2
, (3.22)
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proving the second equality. To obtain the explicit sum formula, we can evaluate the integral
directly by expanding the measure ν as

ν(0, r) =
1

d

(
1− (1− r)d

)
=

1

d

d∑
k=1

(−1)1+k

(
d

k

)
rk. (3.23)

Thus for d ≥ 2,

G(r) =
1

ωd

∫
S+
ν(0, r〈~e1, θ〉) dσ(θ) (3.24)

=
(d− 1)ωd−1

dωd

∫ π/2

0

∫
Sd−1

d∑
k=1

(−1)1+k

(
d

k

)
rk cosk α sind−2 αdφ dα (3.25)

=
(d− 1)ωd−1

dωd

d∑
k=1

(−1)1+k

(
d

k

)(∫ π/2

0
cosk α sind−2 αdα

)
rk. (3.26)

(This integral isn’t valid when d = 1: in that case, G(r) = F (r) = 2r.) The dα integral
evaluates to

∫ π/2

0
cosk α sind−2 αdα =

Γ(d−1
2 )Γ(k+1

2 )

2Γ(k+d
2 )

, (3.27)

and the coefficient of the linear term (k = 1) is
(d−1)ωd−1

dωd
· d · Γ( d−1

2
)

2Γ( d+1
2

)
=

ωd−1

ωd
.

For example, in dimension d = 2, an explicit computation – namely, for the area of intersection
of two circles – yields

F (r) = 1− 1

π

(
2 arccos(r/2)− r

√
1− r2/4

)
=

2r

π
− r3

12π
+ · · · (3.28)

Directly evaluating the integral (3.11) gives

G(r) =
1

π

∫ π/2

0
(2r cos θ − r2 cos2 θ) dθ =

2r

π
− r2

4
. (3.29)

Recall that R and Q depend on d via the underlying dimension of the boolean intersection models
Iλ and Kλ. The distributions of Rλ and Qλ converge to exponential distributions as λ→∞:

Proposition 3.2. For any d ≥ 1, as λ→∞,

λωdF (Rλ)→ Exp(1), (3.30)

and
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λωdG(Qλ)→ Exp(1), (3.31)

where the convergence is in distribution.

Proof. For any r ∈ (0, 1), since Iλ is the intersection of Poisson(λωd) many copies of B,

P(R > r) = P(r~e1 ∈ Iλ) = exp(−λωdF (r)). (3.32)

Similarly,

P(Q > r) = exp(−λωdG(r)). (3.33)

Fix z ∈ (0, λωd). Note that F and G are strictly increasing on [0, 1], and hence invertible. Thus we
can write

P(λωdF (R) > z) = P(R > F−1(z/λωd)) (3.34)

= exp(−λωdF (F−1(z/λωd))) (3.35)

= exp(−z), (3.36)

and similarly for G(Q). Taking λ→∞ finishes the proof.

Corollary 3.3. The exact distributions of λωdF (R) and λωdG(Q) are given by

P(λωdF (R) > z) = P(λωdG(Q) > z) =

{
e−z, 0 ≤ z < λωd

0, z > λωd.
(3.37)

The collections {λF (R)}λ and {λG(Q)}λ are uniformly integrable.

Proposition 3.2 leads to a quick calculation for the expected area of Iλ and Kλ via the following
proposition, which we state for general random sets. For a continuous function f : S→ [0, 1], let

U(f) = {rθ : r ∈ [0, f(θ)], θ ∈ S} (3.38)

be the set with ‘radius’ f(θ) in the direction θ. Note that by definition, Iλ = U(Rλ) and Kλ =
U(Qλ), where Rλ and Qλ are viewed as random functions on S as in (3.6). In general, if A ⊂ Rd
is closed and star-shaped about the origin, then the function fA : S→ [0, 1] given by

fA(θ) = sup{t ∈ (0, 1) : tθ ∈ A} (3.39)
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satisfies A = U(fA).

A random closed setX is rotationally invariant if for any Φ ∈ SO(d), X has the same distribution
as Φ(X) = {Φ(x) : x ∈ X}.

Proposition 3.4. Let X be any random closed set contained in B that is almost surely star-shaped
and rotationally invariant. Let S : S→ [0, 1] be the random function, defined on the same probability
space as X, satisfying X = U(S). Then

E|X| = ωdE
[
S(~e1)d

]
. (3.40)

Proof. The volume of any closed, star-shaped set A with A = U(f), for a continuous function
f : S→ [0, 1], is given by

|A| = 1

d

∫
S
f(θ)d dσ(θ). (3.41)

See Appendix 8.2 for a proof. Since X is rotationally invariant, E
[
S(θ)d

]
does not depend on θ.

Thus,

E|X| = E
[

1

d

∫
S
S(θ)d dσ(θ)

]
(3.42)

=
1

d

∫
S
E
[
S(θ)d

]
dσ(θ) (3.43)

=
1

d

∫
S
E
[
S(~e1)d

]
dσ(θ) (3.44)

=
1

d
E
[
S(~e1)d

] ∫
S

1 dσ(θ) (3.45)

= ωdE
[
S(~e1)d

]
. (3.46)

Since X ⊂ B, the expression inside the expectation is almost surely bounded by ωd, and hence the
interchange of integration and expectation is valid by Fubini’s theorem.

Applying this proposition to Iλ and Kλ gives:

Corollary 3.5. For any d ≥ 2 and λ > 0,

E
∣∣∣Iλ∣∣∣ = ωdE(Rλ)d, E

∣∣∣Kλ
∣∣∣ = ωdE(Qλ)d. (3.47)

We are now ready to compute E|Iλ|.

Proposition 3.6. limλ→∞ λ
dE|Iλ| = limλ→∞ λ

dE|Kλ| = d!ωd
ωdd−1

.
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Proof. Here we carry out the details only for I; the analysis for K is similar. We aim to show that
F (Rλ) is approximately equal to its linear term when λ is large. Let c > 0 be any constant. By
Proposition 3.2 and the definition of F ,

P(Rλ > cλ−1/2) = P(cλ−1/2~e1 ∈ Iλ) (3.48)

= exp(−λωdF (cλ−1/2)) (3.49)

≤ exp
(
−λωd−1(cλ−1/2 −O(λ−3/2))

)
(3.50)

= exp(−O(
√
λ)). (3.51)

Proposition 3.1 now implies that for some constant C > 0,

P
(∣∣∣∣F (Rλ)− ωd−1

ωd
Rλ
∣∣∣∣ ≥ Cλ−3/2

)
→ 0. (3.52)

Consequently, for any ε > 0,

P
(∣∣∣∣λF (Rλ)− λωd−1

ωd
Rλ
∣∣∣∣ ≥ ε)→ 0. (3.53)

Since convergence in probability implies convergence in distribution, Proposition 3.2 gives us that

λωd
ωd−1

ωd
Rλ →d Exp(1) as λ→∞. (3.54)

By Corollary 3.3, the collection {λF (Rλ)}λ>0 is uniformly integrable. By Proposition 3.1, for
r ∈ [0, 1] we have r ≤ CF (r) for some constant C depending only on the dimension. Since
Rλ ≤ 1 deterministically, it follows that Rλ ≤ C · F (Rλ) for all λ. Thus the collection {λRλ}λ>0

is also uniformly integrable. Together, convergence in distribution and uniform integrability imply
convergence of moments (see Theorem 25.12 of [3], for example). Thus, as λ→∞,

λdE(Rλ)d →
(
ωd ·

ωd−1

ωd

)−d
E[Exp(1)d] =

d!

ωdd−1

. (3.55)

Combining this with Proposition 3.4 yields the result.

3.2 Formulas for general intensity measures

We now give a generalization of these ideas for a wider class of intersection models, where the
underlying Poisson process has arbitrary intensity measure, and the sets comprising the intersection
are arbitrary. There are many possible ways to generalize this model: we chose a way that yields
examples with the same flavor as Iλ and Kλ, but with potentially different asymptotic behavior.

Consider a general Poisson point process Cµ,λ on [0, 1] × S with intensity measure λ(µ × σ),
where λ > 0, σ is surface-area measure on S, and µ is a probability measure on [0, 1]. For each
x ∈ B, x 6= 0, let SOx(d) denote the coset of the subgroup SO ~e1(d) of SO(d) given by
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SOx(d) =

{
Φ ∈ SO(d) : Φ(~e1) =

x

‖x‖

}
. (3.56)

Let A ⊂ Rd be a fixed closed convex set such that B ⊂ A and

∂A ∩ ∂B 6= ∅. (3.57)

This assumption ensures that the intersection model almost surely 1) is non-empty for every λ > 0
and 2) converges to the set {0} as λ→∞.

Note that SO ~e1(d) is a compact group, and hence SOx(d) has a unique Haar probability mea-
sure κx. For each C ∈ Cµ,λ, sample a random element ΦC ∈ SOC(d) from κC . The generalized

intersection model Iµ,λA is:

Iµ,λA = B ∩

 ⋂
C∈Cµ,λ

ΦC(A) + C

 , (3.58)

In words, ΦC(A) is a copy of A that we give a random spin and pin at a random point; and Iµ,λA
is the intersection of a Poisson number of such independent copies. Clearly Iµ,λA is rotationally
invariant in distribution.

Let ρ and ν̂ denote the probability measures ρ(0, r) = rd and ν̂(0, r) = 1 − (1 − r)d for r ∈ (0, 1).
The boolean intersection models Iλ and Kλ are special cases of the general intersection model with
respect to these measures, i.e.,

Iλ = Iρ,λB , Kλ = I ν̂,λH , (3.59)

where H = {x ∈ Rd : x · ~e1 < 1}. Define the auxiliary function FµA analogous to F in (3.7): let
Aµ = ΦC(A)+C be one of the randomly rotated and shifted copies of A comprising the intersection

model Iµ,λA where C is drawn from the probability measure 1
dωd

µ× σ, and let

FµA(r) = P(r~e1 /∈ Aµ). (3.60)

There is a simple generic formula in terms of FµA for the expected volume of the intersection.

Fact 3.7. For any λ > 0,

E
∣∣∣Iµ,λA ∣∣∣ = dωd

∫ ∞
0

rd−1 exp(−λωdFµA(r)) dr. (3.61)

The proof of Fact 3.7 is a straightforward consequence of a well known formula for the volume of
a random set (see for example [29]).
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Proof. Write I = Iµ,λA . By Tonelli’s theorem,

E|I| = E
∫
Rd

1{x ∈ I} dx (3.62)

=

∫
Rd

P(x ∈ I) dx (3.63)

=

∫
Rd

exp(−λωdFµA(||x||)) dx (3.64)

=

∫
S

∫ 1

0
exp(−λωdFµA(r))rd−1 dr dσ(θ) (3.65)

= dωd

∫ 1

0
rd−1 exp(−λωdFµA(r)) dr, (3.66)

as desired.

For example, in dimension 2, using the exact equality (3.28) and Fact 3.7 gives the exact formula

E|Iλ| = E|Iρ,λB | = 2π

∫ 1

0
r exp

(
−λ+

λ

π

(
2 arccos

(r
2

)
− r
√

1− r2

4

))
dr. (3.67)

Unfortunately, this integral doesn’t admit a simple asymptotic expansion in λ. The methods of
Proposition 3.4, on the other hand, do allow an easy and explicit calculation.

Continuing with the ideas of the previous section, define the radius of the intersection as in
(3.6):

Iµ,λA = sup{t ∈ (0, 1) : tθ ∈ Iµ,λ}. (3.68)

The analog of Proposition 3.2 holds in general:

Proposition 3.8. Let A ⊂ Rd be a fixed closed convex set such that B ⊂ A and

∂A ∩ ∂B 6= ∅, (3.69)

and let µ be any probability measure on [0, 1]. As λ→∞,

λωd · FµA(Rµ,λA )→d Exp(1). (3.70)

The proof is similar to that of Proposition 3.2. Combining Propositions 3.4 and 3.8 and mimicking
the ideas of Proposition 3.6 gives a general program to compute the asymptotic scaling of the
volume of Iµ,λA . Below are two examples of intersection models that can be analyzed using this
program.

Example 1 Consider Iρ,λH in dimension d = 2, i.e., the hyperplane intersection model Kλ, but
where the underlying Poisson point process is uniform. In this case,
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F ρH(r) =

∫ π/2

0
r2 cos2 θ dθ =

πr2

4
. (3.71)

By Proposition 3.8,

π2

4
λ · (Rρ,λH )2 → Exp(1). (3.72)

Thus, by Proposition 3.4,

λE|Iρ,λH | = πλE(Rρ,λH )2 → π · 4

π2
=

4

π
. (3.73)

Note the difference in scale: Rρ,λH is roughly λ−1/2, while Qλ = Rν̂,λH is roughly λ−1. This limit
scaling reflects the behavior of the densities of ρ and ν̂ near 0.

Example 2 Fix β ∈ (0, π), and define the cone set

Cone(~e1, β) =

{
x ∈ Rd : arccos

(
〈x, ~e1〉
‖x‖

)
< β

}
. (3.74)

In dimension d = 2, one can show that

F ρCone( ~e1,β)(r) ≈ C(β)r as r → 0 (3.75)

for some constant C(β), and thus Propositions 3.8 and 3.4 suggest

E|Iρ,λCone( ~e1,β)| ≈
2

πC(β)2
λ−2. (3.76)

Unlike the ball and hyperplane models, however, the cone model does not have the Crofton cell D1
0

as a scaling limit – see Section 7 for further discussion.

4 Some geometric and probabilistic lemmas

In this section, we state some basic lemmas needed to prove Theorem 1.2 via the coupling outlined
in Section 2. We begin with some notation. For any θ ∈ S, let Cone(θ, δ) denote the cone set

Cone(θ, δ) =

{
x ∈ Rd : arccos

(
〈x, θ〉
‖x‖

)
< δ

}
. (4.1)

Consider the spherical and planar ‘caps’

Cap(θ, δ) = Cone(θ, δ) ∩ ∂B (4.2)
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δ

θ

Cap(θ, δ)
Hyp(θ, δ)

Figure 2: The sets Cap(x, y) and Hyp(x, y)

and
Hyp(θ, δ) = Cone(θ, δ) ∩ {x : x · θ = 1}. (4.3)

Write dH for Hausdorff distance, defined by

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y
||x− y||, sup

y∈Y
inf
x∈X
||x− y||

}
. (4.4)

The first fact describes the boundary of the unit ball B.

Fact 4.1. For δ sufficiently small,

dH(Cap(θ, δ),Hyp(θ, δ)) = 1− cos δ ≤ δ2. (4.5)

Write Sh−(ε) for the (inner) spherical shell

Sh−(ε) = {x ∈ Rd : ||x|| ∈ (1− ε, 1)}. (4.6)

Similarly, write Sh+(ε) for the outer spherical shell

Sh−(ε) = {x ∈ Rd : ||x|| ∈ (1, 1 + ε)}, (4.7)

and set Sh(ε) = Sh−(ε) ∪ ∂B ∪ Sh+(ε).

Fact 4.2. For any ε > 0, there is a partition of Sh−(ε) into K = K(d) sets Ai = Ai(ε), i = 1, . . . ,K,
such that for any K points xi ∈ Ai, i = 1, . . . ,K, the component of the origin in the Boolean
tessellation generated by copies of ∂B centered at the points xi is contained in B2ε = {x : ||x|| < 2ε},
where K does not depend on ε.

For instance, when d = 2, we may take K(2) = 6, and make the Ai consecutive thickened arcs
of length π/3. To see this, assume for simplicity that all the points xi lie on the inner boundary
of Sh−(ε), i.e., that ||xi|| = 1 − ε. Then, with K(2) = 6, the angle between two consecutive
xi, xj is at most 2π/3, so that the circles Ci = xi + ∂B and Cj = xj + ∂B are both tangent to
Cε = ∂Bε = {x : ||x|| = ε} at points pi, pj on Cε separated by an angle of less than 2π/3. Replacing
Ci, Cj by lines li, lj tangent to Cε at pi, pj , we see that li and lj make an angle of at least π/3
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enclosing Cε, so that their intersection lies in B2ε; the same applies to the intersection of Ci and
Cj .

In higher dimensions, a similar argument applies. Once again, we may assume that the points
xi all satisfy ||xi|| = 1− ε. The Ai will be thickened cap-like sets partitioning Sh−(ε) in such a way
that the angle xiOx

′
i formed by two points xi, x

′
i ∈ Ai and the origin O is small. Consequently,

the corresponding angle formed by points xi, xj in adjacent caps Ai, Aj is also small. The spheres
Si = xi + ∂B and Sj = xj + ∂B are tangent to Sε = ∂Bε = {x : ||x|| = ε} at points pi, pj as before;
we replace Si, Sj by hyperplanes Πi,Πj , tangent to Sε at pi, pj , whose unit normal vectors ni, nj
are such that ni · nj is small. This applies to points in every pair of adjacent caps Ai, Aj , so that
the vertices of the polytope formed from the hyperplanes Πi all lie inside B2ε.

Upper bounds on K(d) can be obtained from classical results on covering the surface of a high-
dimensional unit ball with small spherical caps; see, for instance, Theorem 6.3.1 of [4].

We will also need three standard statistical estimates: one regarding the coupon collector pro-
cess, and two related to Poisson random variables. The ‘coupon collector’ refers to the following
discrete time process. Given a finite collection of coupons, say {1, 2, . . . ,K} = [K], we generate an
iid sequence (Xt)t≤T of [K]-valued random variables from any discrete distribution (not necessarily
uniform). The process concludes at the stopping time T when every coupon has been collected at
least once:

T = inf{t ∈ N : [K] ⊂ {X1, X2, . . . , Xt}}. (4.8)

Very precise results about the distribution of T are known; see, for instance, [10]. Here, we use a
simple bound that is convenient for our purposes.

Fact 4.3. Consider any coupon collector process on K coupons, for K = K(d) as in Fact 4.2. Let
T denote the time it takes to collect all K coupons, and let a∗ denote the minimum probability of
selecting any of the coupons. Then for any λ > 0,

P(T > log λ) < Kλlog(1−a∗). (4.9)

We will apply Fact 4.3 in the following way: we collect coupon i when a point of a Poisson
process lands in a region Ai. Note that, since the sets Ai appearing in Fact 4.2 do not necessarily
have equal volume, the coupon collector process considered in Fact 4.3 is not necessarily uniform.
In any case, we can construct the Ai so that a∗ > 0, and thus the probability in (4.9) goes to 0 as
λ→∞.

Proof of Fact 4.3. Let a1, a2, . . . , aK denote the probabilities of selecting the K coupons respec-
tively, and

a∗ = min{a1, a2, . . . , aK}. (4.10)

Let Vi(t) denote the indicator random variable of the event that coupon i has not been collected
by time t, i.e.,
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Vi(t) = 1{i/∈{X1,X2,...,Xt}}. (4.11)

Note that

EVi(t) = (1− ai)t. (4.12)

By Markov’s inequality,

P(T > t) = P

(
K∑
i=1

Vi(t) ≥ 1

)
≤

K∑
i=1

EVi(t) =

K∑
i=1

(1− ai)t ≤ K(1− a∗)t.

Setting t = log λ yields the result.

Proposition 4.4. Fix any µ, δ > 0, and let N ∼ Poi(µ), N ′ ∼ Poi(µ+ δ). Then

TV(N,N ′) ≤ δ, (4.13)

where TV denotes total variation distance between probability distributions.

See for instance [1].

Fact 4.5. Let Y ∼ Poi(Vελ), where Vε is the volume of Sh(ελ), and ελ = λ−1 log2 λ. Then

P(Y < log λ) < λ−1, (4.14)

for sufficiently large λ.

See [9], for example.

5 Coupling the intersection and tessellation models

The goal of this section is to prove our main convergence result, Theorem 1.2. We carry out the
argument for the intersection model with balls, by coupling it to the tessellation model with spheres.
Under this coupling, the Hausdorff distance between the two models tends to 0 as λ → ∞, even
after re-scaling both sets by λ.

The coupling works as follows. Let X = Xλ be a Poisson point process in Rd of intensity λ
2 , and

consider the set ⋃
x∈X

(x+ ∂B). (5.1)
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Let Jλ be the connected component of the origin in the resulting tessellation. Also, let Iλ denote
the ball intersection model on B, that is,

Iλ =
⋂
C∈Cλ

(C + B), (5.2)

where Cλ is a Poisson point process on B of intensity λ. The reason that Iλ comes from a point
process of intensity twice that of Jλ is that only points inside B contribute to Iλ, while points
both inside and outside B will contribute to the shape of Jλ. Recalling notation from the previous
section, define

X ε = X ∩ Sh(ε), (5.3)

and consider the ‘restricted’ model Jλε , the connected component of the origin in the tessellation
induced by ⋃

x∈X ε
(x+ ∂B). (5.4)

Also, let Cελ = Cλ ∩ Sh(ε) = Cλ ∩ Sh−(ε) = {C ∈ Cλ : ||C|| ∈ (1− ε, 1)}, and define

Iλε =
⋂
C∈Cελ

(Ci + B). (5.5)

For ε chosen appropriately, the restricted models are not far from the original models. Precisely:

Proposition 5.1. Set ε = ελ = log2 λ
λ . As λ→∞,

P(Jλ2ε = Jλ)→ 1 and P(Iλ2ε = Iλ)→ 1. (5.6)

Moreover, with probability tending to 1, Jλ ⊂ B2ε and Iλ ⊂ B2ε.

This is essentially the statement that only points near ∂B contribute to the component of the
origin.

Proof. We will prove the assertion for Jλ; the proof for Iλ is similar. The main ingredients are Fact
4.2 and Fact 4.3. Fix any λ > 0, and let {Ai(ελ)}Ki=1 denote the sets given by Fact 4.2. Consider
the stopping time

λcov = min{η : Xη ∩Ai(ελ) 6= ∅, for i = 1, 2, . . . ,K}. (5.7)

We regard the Poisson point processes X = Xη as nested, i.e., they are coupled so as to form a
non-decreasing sequence of sets as η increases. This makes λcov is a well-defined stopping time.

Fix η > λcov. By Fact 4.2, Jη ⊂ B2ελ . It follows that any point y ∈ Xη ∩ Sh(2ελ)c does not
contribute to Jη, i.e., y + ∂B does not lie on the boundary of Jη. Thus Jη2ελ = Jη in this case.

To finish the proof, it suffices to show that

P(λcov < λ)→ 1 as λ→∞. (5.8)

For the above event to occur, the point process Xλ must have at least one point in each set Ai(ελ).
It is enough to have log λ points of Xλ in X ελ – then by Fact 4.3, each Ai will have at least one
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point with high probability. The number of such points is Poisson with mean Vε · λ. By Fact 4.5
and a union bound, and noting that a∗ > 0,

P(λcov ≥ λ) ≤ Kλlog(1−a∗) + λ−1 → 0 as λ→∞. (5.9)

Additionally, the two restricted models are close to each other.

Proposition 5.2. The random sets Iλ, Iλε , J
λ and Jλε can be constructed on the same probability

space such that as λ→∞, with ε = ελ/2 = log2 λ
2λ as in Proposition 5.1,

P(dH(λIλε , λJ
λ
ε ) ≤ Cλ−1/4)→ 1, (5.10)

for some global constant C > 0.

Proof. We will give an explicit coupling of the intersection and tessellation models on the same
probability space where the two models agree with high probability. The coupling works as follows.
We will build the intersection model from the Poisson point process X , so the random sets Jλ and
Jλε are defined above (see (5.4)), and then construct Iλ and Iλε as functions of X . Fix any λ > 0,
and partition X ε = X ελ into two sets

X ε = {x ∈ X ε : ||x|| > 1} ∪ {x ∈ X ε : ||x|| < 1} := X ε,+ ∪ X ε,−. (5.11)

We list the points of X lying in X ε,+ and X ε,− as follows:

X ε,+ = {X1, X2, . . . , XN ′},X ε,− = {XN ′+1, . . . , XN}. (5.12)

Write Xi = SiΘi for i = 1, 2, . . . , N ′, where Si > 1 and Θi ∈ S, and set

C ′i = (Si − 2)Θi for i = 1, 2, . . . , N ′, (5.13)

while C ′i = Xi for i = N ′ + 1, . . . , N . Generate further points C ′i, i = N + 1, . . . , Z from a Poisson
process of intensity λ in {x ∈ B : ||x|| < 1− ε}. Then we set

(Iλ)′ =

Z⋂
i=1

(C ′i + B) and (Iλε )′ =
N⋂
i=1

(C ′i + B). (5.14)

Note that the set (Iλε )′ doesn’t have exactly the same distribution as Iλε : because Sh+(ε) has more
volume than Sh−(ε), (Iλε )′ has slightly more points than Iλε . Also, since the shift map sθ → (s−2)θ
is not an isometry, those points are no longer uniformly distributed over the inner shell. It remains
to show that error between these two point processes is small. The two distributions in question
can be described as follows:

1. Iλε is formed by sampling a Poisson variable N with mean µ = λωd(1− (1− ε)d), and placing
N points on Sh−(ε) with iid uniform angles in S and iid radii R distributed as

P(R ≤ 1− w) = H(w) =
(1− w)d − (1− ε)d

1− (1− ε)d
, w ∈ (0, ε). (5.15)
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Figure 3: On the event that the intersection model is contained in Bε, the difference between (Iλ)′

and Jλ is that some of the copies of B in the former comprise a concave piece of the boundary
(red/dashed), while those in the latter form a convex boundary piece (blue/solid). The difference
is small in Hausdorff distance, because the boundary of the ball is differentiable.

2. (Iλε )′ is formed by sampling a Poisson variable N ′ with mean µ′ = λ
2ωd((1 + ε)d − (1 − ε)d),

and placing N ′ points on Sh+(ε) with iid uniform angles in S and iid radii R′ distributed as

P(R′ ≤ 1− w) = H ′(w) = 1− (1 + w)d − (1− w)d

(1 + ε)d − (1− ε)d
, w ∈ (0, ε). (5.16)

The difference between the means is

µ′ − µ = λωd

((
d

2

)
ε2 +O(ε3)

)
= O(λε2). (5.17)

By Proposition 4.4, TV(N,N ′) ≤ cλε2 for some c > 0. To couple the points of Iλε and (Iλε )′, first
note that the random angles can be coupled directly, so it suffices to couple the radii. We rely on
an idea from optimal transport, namely the optimal coupling for the Wasserstein-1 distance, rather
than total variation. The optimal coupling with respect to the L1 distance is given by the transport
map H ′ ◦H−1: that is, given R, the random variable H ′(H−1(R)) on the same probability space
is distributed as R′, and the average L1 distance between R and R′ is minimized for this coupling;
see for instance Section 2.1 of [30]. Explicit computations with series expansions show that for
u ∈ (0, ε),

u−H ′ ◦H−1(u) = O(ε2). (5.18)

Since ε2 � λ−3/2 as λ→∞, for λ sufficiently large there exists a coupling between R and R′ such
that

|R−R′| ≤ λ−3/2 a.s. as λ→∞. (5.19)
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Figure 4: As long as the angles between intersecting hyperplanes are not too small, their d-fold
intersections move by O(δ) if the hyperplanes are shifted by at most δ.

Let us summarize the proof up to this point, ignoring ε and λ for simplicity. We start with the
points Xi close to ∂B, which define the tessellation model J , a small set near the origin, whose
boundary is composed of convex parts (corresponding to Xi lying just inside the unit ball B) and
concave parts (coming from Xi lying just outside B). We then shift the Xi lying outside B to
diametrically opposite points C ′i; this “flips” the corresponding spheres, which are now centered at
the C ′i, so that the resulting set I ′ is now convex, being composed entirely of convex parts. This
last step does not generate a random copy of I; we’ve introduced a slight distortion, in that the
density of the points C ′i is not quite uniform. We thus have to shift the C ′i slightly in accordance
with (5.19), so that the corresponding parts of the boundary of I ′ also shift a little, until we finally
generate a truly random instance of the intersection model I.

Facts 4.1 and (5.19) together show that, in carrying out these two steps, the parts of the
boundaries of the sets I and J corresponding to a fixed Xi are close (within Hausdorff distance
λ−3/2, before scaling). It remains to show that the sets I and J are themselves close. For this,
we must exclude certain unlikely geometric configurations arising when different sphere boundaries
intersect. Namely, if the angle at which some set of spheres meet is too small, shifting them by
δ = λ−3/2 (as indicated in Figure 4) could move the common intersection by much more than δ.
See Figure 4 for a diagram in dimension d = 2 (drawn with lines instead of circles for simplicity).
To complete the proof, we need to show that the probability that these shifts move the boundary
of J by more than λ1/4δ = λ−5/4 tends to zero.

In dimension d = 2 (see Figure 4), all we need to show is that each angle φ at each corner of
the boundary of J is not too small. In higher dimensions, a slightly more complicated argument is
required; see below. We will use the fact that the points of J that move the most during shifting
are the extreme points of J , so we focus attention on these extreme points, each of which is the
common intersection of d bounding spheres.
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By Fact 4.1, we may replace the spheres Xi + ∂B by hyperplanes Yi · z = αiε, where
Yi = (||Xi|| − 1) · Xi

||Xi|| and 0 < αi < 1. To further simplify matters, we may upper bound the
movement during shifting by assuming that all αi = 1, and that the total number of hyperplanes
comprising the intersection is O(log2 λ) (which holds with high probability, since the number of
hyperplanes is Poisson with mean Cd log2 λ). Temporarily rescaling so that ||Yi|| = ε = 1, our task
is to show that shifting any d of the hyperplanes Yji · z = 1 to Yji · z = 1 + δ moves their common
intersection w (a single point) by no more than O(λ1/4δ), with high probability. Equivalently, we
need to show that w is not too large in modulus; specifically, we need ||w|| ≤ Cdλ

1/4, for some
constant Cd depending only on d, with high probability.

Suppose not, so that ||w|| > Cdλ
1/4, and recall that Yji · w = 1 for each 1 ≤ i ≤ d. Choose w′

parallel to w and in the affine span of the Yji , so that w′ =
∑
βiYji with

∑
βi = 1. Then

||w′||||w|| = w′ · w =
∑

βi(Yji · w) =
∑

βi = 1,

so that ||w′|| < (Cd)
−1λ−1/4. In other words, the affine span of the Yji passes within distance

(Cd)
−1λ−1/4 of the origin. For this to happen, some point Yjd lies within angular distance C ′dλ

−1/4

of a great hypersphere defined by some d− 1 other points Yj1 , . . . , Yjd−1
. There are O(log2(d−1) λ)

such choices for Yj1 , . . . , Yjd−1
, and for a fixed such choice, the probability that Yjd lies within λ−1/4

of their great hypersphere is C ′′dλ
−1/4. Thus each boundary intersection point is indeed not too

large in modulus, and so does not move by more than λ1/4δ = λ−5/4 after shifting, with high
probability. Putting the pieces together, the sets I and J are within Hausdorff distance λ−5/4 with
high probability, and so

P(dH(λIλε , λJ
λ
ε ) > Cλ−1/4)→ 0, (5.20)

as desired.

The final ingredient is a union bound.

Proof of Theorem 1.2. Combining Propositions 5.1 and 5.2 gives

P(dH(λJλ, λIλ) > Cλε2) ≤ P(Jλ2ε 6= Jλ) + P(Iλ2ε 6= Iλ) + P(dH(λJλ2ε, λI
λ
2ε) > Cλ−1/4)→ 0. (5.21)

This method could likely be applied to a wider class of intersection models: namely, the ball
B could be replaced by another set satisfying some curvature condition. The difficulty in such a
generalization would lie in finding a canonical way to construct a coupling between the intersection
model and another model known to have the Crofton cell of a tessellation model as a scaling limit.
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6 The expected volume of Iλ

We first sketch Goudsmit’s classical calculation for the second moment of the area A of a typical
cell in a Poisson line tessellation T, when d = 2.

First we recall some basic facts about T, which can be defined as follows. Let P be a unit intensity
Poisson process on [0, 2π)×R+. We associate the point (θ, ρ) ∈ P with the line x cos θ+y sin θ = ρ.
This yields a translation and rotation invariant measure on families of lines in the plane; T is a
random instance of this measure. It is not hard to show that the intersections of T and another
random line form a Poisson process of rate 2, and also that T has π intersections, and thus π cells,
per unit area.

Goudsmit in 1945 [15] considered tessellations on the surface of a sphere, but we can rephrase
his argument in terms of a realization of T over a large circular region R of area N . We choose two
points x, y ∈ R uniformly at random and ask for the probability qN that they lie in the same cell
of T. If f(t) denotes the density function for the area A of a typical cell, then, as N →∞,

NqN →
∫∞

0 t2f(t) dt∫∞
0 tf(t) dt

=
E(A2)

E(A)
,

since tf(t) is the density function for the area of a cell containing a given point. On the other hand,
x and y lie in the same cell of T if and only if the line segment lxy joining them does not intersect
T. As noted above, the number of intersections between lxy and T is Poisson with rate 2, so there
are no such intersections with probability e−2l. Consequently,

NqN →
∫ ∞

0
2πle−2l dl =

π

2
.

Combining these two expressions yields the formula E(A2) = π
2E(A) = 1

2 , which we may rewrite as

E(A2)

E(A)2
=
π2

2
.

Goudsmit’s argument generalizes to higher dimensions. Write Vd for the volume of a typical cell
in a Poisson hyperplane tessellation Td in Rd. This time we will choose a different normalization
for the measure µd−1 on the space A(d, d − 1) of affine hyperplanes in Rd, in which the measure
of hyperplanes meeting the unit ball is 2, i.e., the diameter of the unit ball. Consequently, in the
corresponding tessellation Td, the expected number of hyperplanes H meeting the unit ball is 2.
With N now representing the volume of a large spherical region R, and qN as before, we once again
have

NqN →
∫∞

0 t2f(t) dt∫∞
0 tf(t) dt

=
E(V 2

d )

E(Vd)

as N → ∞. The second part of the calculation requires a slight modification; we now wish to
estimate the number Id of intersections of a line L of length l with Td. Once again, Id has a Poisson
distribution, with mean cd given by Crofton’s formula [32] (page 172), namely

1

l

∫
A(d,d−1)

|L ∩H|µd−1(dH) =
2ωd−1

dωd
:= cd,
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where

ωd =
πd/2

Γ(d/2 + 1)

is the volume of the unit ball. Continuing the argument as before, and recalling that Sd = dωd is
the surface area of the unit ball, we have

NqN →
∫ ∞

0
Sdl

d−1e−cdl dl =
d!

cdd
ωd.

As before, this yields
E(V 2

d )

E(Vd)
=
d!

cdd
ωd,

and, since (with this normalization) we have

E(Vd) =

(
2

cd

)d 1

ωd

(see [23], pages 156 and 179), we conclude that

E(V 2
d )

E(Vd)2
=
d!

2d
ω2
d,

in agreement with [23] (page 179).

6.1 Intersection model

In this section, we apply the above results to give an alternative proof of Proposition 1.3. This is
essentially contained in Theorem 1.2 and the formulas above; Theorem 1.2 relates the volumes of
Iλ and D1

0, and the above analysis applies to D1
0. The scaling in Theorem 1.2 relies on the scaling

in Theorem 1.1, which was briefly sketched in the introduction. For completeness, we now explain
the scaling in more detail, in the context of Theorem 1.2.

Suppose then that we know that the intersection Iλ = Iλd converges to the Crofton cell of a
suitably-scaled Poisson hyperplane process, and we wish to determine the scaling.

First, consider the Poisson hyperplane model normalized, as above, so that the expected number
of hyperplanes meeting the unit ball is 2. Write Bε = {x : ||x|| < ε}, so that the expected number
of hyperplanes meeting Bε is 2ε. For this process, the expected volume E(V 0

d ) of the Crofton cell
V 0
d is related to the volume of the typical cell Vd as follows:

E(V 0
d ) =

E(V 2
d )

E(Vd)
=
d!

cdd
ωd =

d!ddωd+1
d

2dωdd−1

.

The last two equalities come from the preceding section. The first equality is proved by calculating
the probability that a point chosen uniformly at random in a large region lies in the same cell as
the origin (as in the first part of Goudsmit’s calculation).

Second, let us choose ε = ε(λ) → 0 so that the expected number of spheres in the intersection
model that meet Bε tends to infinity. Then the intersection model inside Bε is well-approximated
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by a Poisson hyperplane tessellation. The number of intersecting spheres meeting Bε is the number
of points of the underlying Poisson process in the shell Sh−(ε) = {x ∈ Rd : ||x|| ∈ (1− ε, 1)}. This
number is asymptotically ελdωd, i.e., λdωd/2 times the “normalized” value above. Consequently,
as λ→∞,

E(|Iλd |) = (1 + o(1))E(V 0
d )

(
2

λdωd

)d
= (1 + o(1))

d!ωd

λdωdd−1

,

so that

lim
λ→∞

λdE(|Iλd |)→
d!ωd

ωdd−1

,

in agreement with Proposition 1.3.

7 Further questions

We close with some questions related to intersection processes that arose in the course of our
research.

Question 7.1. What class of intersection models has the Crofton cell of the hyperplane tessellation
model D1

0 as a scaling limit?

Some kind of curvature condition is likely necessary: for example, consider the cone intersection
model Iρ,λCone( ~e1,β) (discussed at the end of section 3.2). Just like the hyperplane model, the cone

model is a polyhedron. However, when β 6= π
2 , each cone whose apex lies at the boundary of the

intersection will contribute an additional vertex. Back of the envelope calculations show that these
vertices remain with positive probability in the limit λ→∞, which strongly suggests that the cone
model does not have D1

0 as a scaling limit.

Question 7.2. Proposition 3.8 shows that the radius Rµ,λA converges to an exponential distribution
under some rescaling. How does the rescaling relate to the geometry of A? How does it relate to
the behavior of µ?

For example, when A = B, only the behavior of the density of µ near 0 matters in the limit.

Question 7.3. Let Sλ denote the number of faces of the intersection model Iλ. Fact 4.2 suggests
that Sλ is uniformly tight – i.e. that for any δ > 0 there exists t > 0 such that for any λ >
0,P(Sλ > t) < δ – which would imply the existence of a limiting stationary distribution for S. Can
the limiting distribution and transition probabilities for the stochastic process (Sλ)λ>0 be computed
or approximated?

A similar question has been answered for the typical Poisson-Voronoi cell and for the Crofton
cell of a hyperplane tessellation, in a different limiting context [5, 8]. The intersection construction
of the Crofton cell D1

0 seems ideal to study this question, because it has a natural renewal quality
as λ increases.
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8 Appendix

8.1 Appendix A

In this appendix we recall the definition and some basic properties of Poisson point processes, which
are used throughout this article.

Definition 8.1. Let Ω ⊂ Rd be a Borel set, and µ a finite Borel measure on Ω. The Poisson point
process (PPP) on Ω with intensity µ, denoted X , is the finite set consisting of Poisson(µ(Ω))
many independent points sampled from the probability measure 1

µ(Ω)µ.

This is a natural, intuitive definition; for a proper introduction to the theory of Poisson point
processes, see [22].

Fact 8.2. Suppose X is a PPP on a Borel set Ω ⊂ Rd with intensity meausre µ.

a. Let A ⊂ Ω be any Borel set. Then

|A ∩ X | ∼ Poisson(µ(A)). (8.1)

b. If A,B ⊂ Ω are disjoint Borel sets, then X ∩A and X ∩B are independent.

An important special case of Fact 8.2a is that the probability that a given region A contains no
points of X is given by:

P(A ∩ X = ∅) = exp(−µ(A)). (8.2)

8.2 Appendix B

In this appendix we note a formula for finding the volume of a star-shaped domain in Rm by doing
an integration over the (m− 1) dimensional sphere.

Fact 8.3. Suppose g : Sm−1 → R+ is continuous, and let A ⊂ Rm be the star-shaped open set
defined by

A = {x ∈ Rm : |x| < g(x/|x|)}.

Then Vol(A) = 1
m

∫
Sm−1 g

m dS, where dS is the (m− 1)-dimensional surface area form on Sm−1.

Proof. The formula comes from integrating in spherical coordinates. Applying Folland’s theorem
2.49 [11] to the function f(x) = 1{x ∈ A} gives
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Vol(A) =

∫
Rd
f(x) dx (8.3)

=

∫
Sm−1

∫ ∞
0

f(rx′)rm−1 dr dσ(x′) (8.4)

=

∫
Sm−1

∫ g(x′)

0
rm−1 dr dσ(x′) (8.5)

=
1

m

∫
Sm−1

g(x′)m dσ(x′). (8.6)

References
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