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Abstract

Let G be a graph on n vertices with independence number «w. We prove that if n is
sufficiently large (n > o’k + 1 will do), then G always contains a k-connected subgraph
on at least n/a vertices. The value of n/a is sharp, since G might be the disjoint union
of a equally-sized cliques. For k > 3 and a = 2,3, we shall prove that the same result
holds for n > 4(k — 1) and n > W respectively, and that these lower bounds on n
are sharp.

1 Introduction

When can we find a large highly connected subgraph of a given graph G? A classical theorem
due to Mader [10] (see also [6]) states that if G has average degree at least 4k, then G contains
a k-connected subgraph H. Mader’s theorem does not give a lower bound on the order of
H. If G is dense (for instance if §(G), the minimum degree of G, is bounded below), it is
natural to expect that G in fact contains a large highly connected subgraph. A result of
Bohman et al. [1] implies that for every graph G of order n with §(G) > 4vkn, the vertex
set V(G) admits a partition such that every part induces a k-connected subgraph of order
at least vkn/2. In a similar direction, by a recent result of Borozan et al. [4], we know
that every graph G of order n with 6(G) > \/c(k — 1)n contains a k-connected subgraph
of order at least \/(k — 1)n/c, where ¢ = 2123/180. What if we are interested in finding a
larger k-connected subgraph, say of order ¢n? Along these lines, Bollobds and Gyérfas [3]
conjectured that for any graph G of order n > 4k — 3, G or its complement G contains
a k-connected subgraph H of order at least n — 2(k — 1). Since either G or G is a dense
graph, we might expect to find a very large highly connected subgraph in one of them. This
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conjecture was settled affirmatively for n > 13k — 15 by Liu, Morris and Prince [9], and then
for n > 6.5(k — 1) by Fujita and Magnant [§].

Suppose next that §(G) > cn. Can we find a k-connected subgraph of G on at least cn
vertices? It turns out that the answer is “yes” for sufficiently large n > ny(c, k), and in fact
a simple argument gives even more — there exists such a subgraph on at least n/m vertices,
where m = [1/c|. For instance, if ¢ > 1/2, then G itself is k-connected. To see the assertion,
suppose that G itself is not k-connected. Then G can be split into two “large” pieces with
a separating set of size at most k — 1. Both pieces must have order at least ecn — (k — 1) + 1,
so as not to violate the minimum degree condition. If one of the pieces does not induce a
k-connected subgraph, then we split the subgraph, to obtain another two large pieces and a
separating set of size at most £ — 1. Now, each of the three large pieces has order at least
en —2(k —1) 4+ 1. We repeat this procedure, as long as one of the existing large pieces does
not induce a k-connected subgraph. After ¢t steps, we have ¢t + 1 large pieces, each with order
at least cn—t(k—1)+1. If m <t = O, (1), then there is a large piece with at most -5 < cn
vertices, which is a contradiction. Thus, the procedure must terminate after ¢ < m — 1 steps,
giving us t + 1 < m large pieces, say Xy,...,X;. Finally, let C' be the set of accumulated
separating vertices, so that |C| < t(k —1). We can “redistribute” the vertices of C' to the
X;. The minimum degree condition on G implies that every vertex of C' must have at least
k neighbours in one of the X;. Therefore, we can write C = C; U --- UC, such that, every
vertex of C; has at least k neighbours in X, for every 1 < i < t. So we are done, since some
set X; U C; induces a k-connected subgraph on at least n/m > cn vertices. Furthermore,
the value of n/m for the order of the largest k-connected subgraph is sharp, if & > 4. To
see this, we can let G be the union of m cliques, each with [n/m]| + 1 vertices, and ordered
linearly in such a way that any two successive cliques intersect in at most three vertices,
with non-consecutive cliques being disjoint.

Here, we instead focus on another graph parameter which forces G to be dense, but
which does not immediately yield a trivial bound for our problem. Such a parameter is the
independence number a(G). If a graph G has independence number «, then its complement
G has clique number «, so that, by Turdn’s theorem, G has average degree at most around
(1 —1/a)n, and so G has average degree at least around n/a. It is natural to conjecture
that this average degree condition automatically implies that G has a k-connected subgraph
on at least n/« vertices. However, this conjecture is false. Indeed, for the cases a = 2 and
a = 3, our graphs in Constructions 5 and 7 (see Section 3) have average degrees (19/32)n
and (307/729)n, and no k-connected subgraphs of orders n/2 and n/3 respectively.

Structures in graphs with fixed independence number are widely studied. In particular,
the problem of finding a large subgraph with certain properties in a graph with fixed in-
dependence number has received much attention. For example, a famous theorem due to
Chvétal and Erd6s [5] from 1972 states that any graph G on at least three vertices, whose
independence number a(G) is at most its connectivity «(G), contains a Hamiltonian cycle.
Motivated by this, Fouquet and Jolivet [7] conjectured in 1976 that if, instead, G is a k-
connected graph of order n with «(G) = a > k, then G has a cycle with length at least
M. Recently, this long standing conjecture was settled affirmatively by O et al. [11].

In this paper, we consider the following question. Fix k& > 1, and let G be a graph on n
vertices with independence number . Can we always find a large k-connected subgraph of
G? A little thought shows that, if n < ak, then there might be no such subgraph, and if



n > ak + 1, then we are only guaranteed a k-connected subgraph of order [n/al, since in
both cases G might consist of the disjoint union of « cliques, each with either [n/a] or |n/a/]
vertices. Such a graph G has the fewest edges among all graphs of independence number «,
so it seems that it should be extremal for our problem as well.

In fact, for large n, this construction (which we will call the disjoint clique construction,
or just DCC) is indeed extremal. Specifically, we prove in Theorem 2 that any graph G of
order n > o’k + 1 and independence number « must have a k-connected subgraph of order
at least [n/a]. However, for smaller values of n, this no longer applies. For instance, when
a =2 and k > 3, there is a graph of order n = 4k — 5 and independence number 2 with no
k-connected subgraph of order at least [n/2] (see Construction 5). Also, when a = 3 and
k > 3, there is a graph of order n = (%1 —1 (for k odd) or n = (W} — 2 (for k
even), and independence number 3, with no k-connected subgraph of order at least [n/3]
(see Construction 7). These examples, however, are extremal, in the sense that for any graph
with order n > 4k — 4 (resp. n > % for k odd, and n > % — 1 for k even), there is
always a k-connected subgraph on at least [n/2] (resp. [n/3]) vertices, and the DCC is thus
optimal. We prove this in Theorem 4 and Theorem 6. In view of the complexity of both
Construction 7 and the proof of Theorem 6, we suspect that the generalisation to higher
values of « is far from simple.

Although Theorem 6 might appear rather modest, the structural difference of Construc-
tions 5 and 7 shows the difficultly of finding the exact lower bound on n for a@ > 4. Indeed,
we have no conjecture as to what this lower bound might be. By contrast, the sharpness
constructions for both the Bollobas-Gyarfas conjecture and the Fouquet-Jolivet conjecture
(now the theorem of O et al.) both consist of one essentially unique example, suggesting that
our problem is very different from these others. Therefore, rather than pursuing the correct
lower bound on n for all o, we present in Theorem 2 an argument yielding the lower bound
of n > a’k +1 for all a, k > 1.

For a graph G and sets X,Y C V(G), let G[X] denote the subgraph of G induced by X.
Let E(X,Y) denote the set of edges between X and Y, and e(X,Y) = |E(X,Y)|. For a
vertex v € V(G), let I'(v) denote the set of neighbours of v. We say that v dominates X if
v is adjacent to every vertex of X \ {v}. For any other terms not defined here, we refer the
reader to [2].

2 The case of general «

From now on we fix k > 1 and a > 1. Our first observation is that the case £k = 1 in our
problem is trivial. Indeed, if G is a graph of order n and independence number «, then the
largest connected component of G must contain at least [n/«a| vertices. The case k =2 is a
little harder, but is covered by the following result.

Proposition 1. Let G be a graph of order n > 2a and independence number o. Then G
contains a 2-connected subgraph of order at least [n/al].

Proof. We apply induction on «, with the case a = 1 being trivial. Let a > 2, and G be as
in the statement of the proposition. We are done if G is 2-connected, so assume otherwise.
We consider the blocks of G, for which we refer the reader to [2] (Ch. IIL.2) for further

information. Recall that a block of G is a subgraph which is either an isolated vertex, or a



bridge (with its end-vertices), or a maximal 2-connected subgraph (i.e., not strictly contained
in another 2-connected subgraph). An end-block of G is a block which is incident with at
most one cut-vertex of G, and G must contain an end-block. Note that, since G is not
2-connected, G itself is not an end-block. This means that there exists an end-block B C GG
such that 1 < |B| < |G| and a(G — B) = 3, where 1 < f < v — 1.

Now, if |B| > 2 then B is 2-connected, so we may assume that |B| < n/«. This implies
|G — B| >n—n/a>2(a—1) > 23. Applying the induction hypothesis to G — B, we see
that G — B contains a 2-connected subgraph of order at least %‘m > % =n/a.

Similarly, if |B| € {1,2}, then G — B contains a 2-connected subgraph of order at least

n—|B]| -2
5 2 a1 > /o O

The example of a path on 2« vertices shows that the hypothesis cannot be weakened.
Consequently, we may, if necessary, restrict our attention to the case k > 3. Our first main
result shows that, for large values of n, the disjoint clique construction (DCC) is optimal.

Theorem 2. Let a,k > 1 and let G be a graph of order n > o’k + 1 and independence
number o. Then G contains a k-connected subgraph of order at least [n/al].

Proof. Let G have order n > o’k +1 and independence number «. We wish to find a large
k-connected subgraph of G. To this end, we apply induction on «, and assume that the
theorem is true for smaller values of . It is certainly true when o = 1, since a clique with
at least k + 1 vertices is k-connected — note, however, that this is the only place where we
use the “41” in the lower bound on n. Thus, let o > 2.

Before proceeding with the formal proof, we explain the general strategy. If G itself is not
k-connected, there must exist a separating set C, splitting the rest of G into two pieces X
and Y. We may then use induction to argue that the independence numbers a(G[X]) and
a(G[Y]) add up to «, and |X| and |Y| are roughly proportional to a(G[X]) and a(G[Y])
respectively. We keep splitting up X, Y, ..., assuming each is not k-connected, until we are
left with « cliques, each of which has order at least k 4+ 1. (This is one place where we
need the bound on n, so that the union of the accumulated separating sets C’ should not
deplete the remaining graph too much.) Finally, we “redistribute” the vertices from ' to
the cliques, noting that each v € C' must dominate some clique, or else the independence
number is too high. One such “enhanced” clique must have at least [n/«] vertices, and this
will be our desired k-connected subgraph.

Now we begin the formal proof. We consider the largest ¢ > 0 such that there exists a
disjoint union V(G) = AgU A, U --- U A; UC; with the following four properties:

(i) A; # 0 for all 0 < j <i (but we may have C; = 0))
(i) B(A;, Ap)=0forall0<j<l<i
(ii)) a(G[Ag)) + -+ + a(GIA]) = a

(1v) O ik 1) < 4] < ER

«

for all 0 < j <.

That there is such an i follows from setting i = 0, A; = V(G) and C, = 0. By (i), G
has an independent set of size ¢ + 1, and so i < a — 1. Now, if we can take i = a — 1,
we are done. To see this, note that in this case properties (i) and (iii) would imply that



a(G[Ag]) = -+ = a(G[Aa—1]) = 1, so that G[Ag],...,G[A,_1] are all cliques. Property (iv)
then implies that each clique has order at least

g—(a—l)(k—l)>ak:—(a—1)(l<:—1):a—l—k:—lzk:+1,

and hence each clique is k-connected. Next, every vertex v in C,,_; must be adjacent to every
vertex in some A;, or else we would have an independent set with a+1 vertices. Hence there
is a disjoint union C,,_; = DyU --- UD,_; such that, for every 0 <j <a—1land v € D;, v
dominates A;. (Note that any of C,_1, Dy, ..., D,_; may be empty.) Now, each G[A; U D]
is a k-connected subgraph, and one of them must have at least [n/a]| vertices, as desired.

Now suppose that G does not have the required k-connected subgraph. Then, from the
above argument, the maximum i for which there is a disjoint union V(G) = AgU --- UA,; UC;
satisfying (i) to (iv) must satisfy i < a— 1. Fix this i¢. From property (iii) and the pigeonhole
principle, we may assume, relabelling if necessary, that a(G[4;]) > 2. From property (iv),
we now have

4> WEA )
Zg+g—(a—2)(k—1)
>g+ak—(a—2)(k—1)

=2 42(k—1)+a> |2,

Hence G[A4;] is not k-connected, and we have A; = X UY UC such that X, Y # 0, |C| < k—1,
and E(X,Y)=0. Set Aj =A; for0<j<i—1, Aj=X, A, =Y, and C;,; = C;UC, s0
that V(G) = AGU --- UA;,; UC; ;. We claim that this disjoint union satisfies properties
(i) to (iv) with ¢ + 1 in place of 4, which will contradict the maximality of 7. It is clear that
(i) and (ii) both hold for i 4 1.

Before we prove (iii) and (iv), we first note that:

(G[X])n

Both |X| < & and |Y| < 2

(G([lY])n must hold. (1)

without loss of generality). Then

Otherwise, assume that | X| > O‘(G[ai)q)” (

(G[X])n

X > 2 > a(G[X]) - ak > a(G[X])%k + 1,

so that, by induction, G contains a k-connected subgraph on at least [%1 > [n/a]

vertices, a contradiction.

Now we prove (iii) for i+1. We have to prove that a(G[X])+a(G[Y]) = a(G[4;]). Clearly,
if a(G[X]) + a(G[Y]) > a(G[4;]), then we can find an independent set in G[A;] with more
than a(G[A;]) vertices, a contradiction. On the other hand, if a(G[X])+a(G[Y]) < a(G[A4;]),



then by property (iv) for i, we have

(X + Y] =[4] - C]

> I 1y -0

a(GX])n | a(GY])n

AV

: . +g—z’(k—1)—|(}\
5 dGX]n O‘(G(E[YD" +ak—(i+1)(k—1)

YD™ 4 ok = (0= 1)k — 1)

Y

>

which means that either |X| > a(G[X])n

= or Y] > W This contradicts (1).
Finally, we prove (iv) for i + 1. Clearly the property holds for A;' when 0 < j<i—1. It
remains and suffices to prove that
X X
O‘(C’YL])n_(i+1)(;€_1)S|X|SO‘(GL])n7 (2)

since the analogous inequalities for Y can be proved similarly. Now, the upper bound of (2)
follows from (1), so it remains to prove the lower bound. Suppose that |X| < @ —(i+

1)(k — 1). Then, since a(G[X]) + a(G[Y]) = a(G[4;]), we must have

Y] = 4] - [X] =[]

> AR 1) - 1x1 -1
>W—i(k—l)—(@l—(iﬂ)(k—l))—<’f—1)
_a@hn

which contradicts (1).
It follows that properties (i) to (iv) hold for i + 1, which is the required contradiction.
The induction step for « is now complete, and the theorem is proved. O

One might hope that the condition on n can be relaxed all the way down to n > ak + 1,
in order for the conclusion of Theorem 2 to hold. However, this is not possible. As we
have mentioned in the introduction, when o = 2,3, we would require n > 4(k — 1) and

(approximately) n > 27(11_1), respectively. In the following construction, we will see that,

for every a > 4 and k > 3, there exists a graph G with approximately %2_1) vertices
and independence number «, for which the conclusion of Theorem 2 does not hold. This

construction is illustrated in Figure 1.




Construction 3. Let k > 3. We construct the graph G47k as follows. For 1 < i < 4, let
A;, B;, C; be sets of vertices, where

|As| = [B1| = [Bo| =k — 1, [Bs|=|Byf=Fk—2,

k—3 k—1

il =10l = |[*5= ], 163l =1cul = | =5,
Let v be another vertex. For all i, we add edges to make G [A; U B;UC;] a clique, and add
all edges between the following 10 pairs:

(v, 4;), (By, B3), (By, By), (C1,Cy), (Cs,Cy), (C1, Cy), (Co, Cy).

Now let o > 5. We construct the graph G, from Gy, as follows. For 1 < j < a —4, let
D;, E; be additional sets of vertices, where

D =k—2, |E|= [3““2_%

For all j, we add edges so that G, ,[{v} U D;] and G, ,[D; U E;] are cliques.

Figure 1. A graph G, j, with a(G, ;) = , and no k-connected subgraph on at least [n/a] vertices.

We remark that in Figure 1, as well as in subsequent figures, a circle indicates a clique,
and a line connecting two sets means that all edges between the sets are present.

For every o > 4 and k > 3, it is easy to see that a(G, ;) = a. This is true even for
k = 3,4, where we have C; = Cy = (). Also,

Sa(k — 1

O‘(2)—(a—1) if k is odd,
(ol =n = Sak—1) — «

#—(a—l) if k is even,



so that

-1
M if £ is odd,
HER T
—1)-1
“ 5(k2) if k is even.

Now, the sets {v} and D;, for 1 < j < a — 4, are all cut-sets of size at most k£ — 1 for
Gg - This means that any k-connected subgraph of G, ; must be within either Gy, or
some D; U E;. Next, {v} UC; UCj5 is a cut-set of size at most k — 1 for Gy, so that any
k-connected subgraph of Gy, must be within either H = Gy [{v} UU;_; 3 4; U B; U Cj] or
H = Gyr[{v}UlU;zg 4 AU B; U U?:l Cy]. Since Cy,UC} is a cut-set of size at most k — 1 for
H', any k-connected subgraph of H' must be within H” = G, ,[{v} U Uizaa 4i U B; U Gy,
since G4,k[U?:1 C;] does not contain a k-connected subgraph. Finally, {v} U B3 and {v} U B,
are cut-sets of size k — 1 for H and H”, respectively. It follows that a k-connected subgraph
of G, ) with the largest order must be either G, ;[4; U B; U C;] for some 1 < i < 4, or
Gox[D; U E;] for some 1 < j <« —4. It is easy to check that each of these subgraphs has
order [n/a] — 1.

3 The cases a =2 and o = 3

In this section, we consider our problem for the cases @ = 2 and a = 3. While we believe
that the bound n > o’k + 1 in Theorem 2 is far from being sharp, we will obtain the sharp
results for a = 2,3. When a = 2, the best bound on n improves that of Theorem 2 slightly.

Theorem 4. Let k > 3, and let G be a graph of order n > 4(k—1) and independence number
2. Then G has a k-connected subgraph of order at least [n/2].

Proof. Let k,n and G be as in the statement of the theorem. If G is k-connected we are
done, so assume that G is not k-connected. Then we can write V(G) = A; U Ay UC with
IC] < k—1,0 < |Ay] < |A4y] and E(A;,4y) = 0. Since o(G) = 2, each G[A4;] must be
complete, and moreover we can write C' = C; U Cy such that each vertex in C; dominates all
of A;.

If |A{| > k, then also |Ay| > k. The larger of G[A; U C4] and G[A, U Cy], with at least
n/2 > k vertices, is k-connected, and hence is our desired subgraph.

If instead |A| < k —1, then |[Ay] =n—|C|—|A;| >n—2(k—1) >n/2 >k, so G[A,] is
our desired subgraph. O

The bound on n in Theorem 4 is indeed best possible, as can be seen by the following
construction, illustrated in Figure 2.

Construction 5. Let k > 3. Let G be formed from five vertex sets A, B,C,D and E, of
orders k — 1, Lk—glj, [%],k‘ — 1 and k — 2 respectively, and with all edges within each set,
and from A to B, B to D, D to E, E to C and C to A.



Figure 2. A graph G with a(G) = 2, and no k-connected subgraph on at least [n/2] vertices.

We can easily see that |G| = 4k —5 = n, a(G) = 2, and the largest k-connected subgraph
in G is G[D U E]J, of order 2k — 3 = [n/2] — 1.

Now, we consider o = 3. We will prove the following theorem, which is our second main
result of this paper.

Theorem 6. Let k > 3, and let G be a graph with order n, where
27(k—1)

1 if k is odd,
"= 27(k — 1 ®)
(4_) —1 ifk is even,

and independence number 3.
Then G has a k-connected subgraph of order at least [n/3].

Rather surprisingly, the lower bound for n as stated in (3) is the best possible, so that in
Theorem 6, the DCC is once again optimal. For smaller values of n, we have the following
construction, illustrated in Figure 3.

Construction 7. Let k > 3. We construct G as follows. Let A, B,C,,Cy, Dy, Dy, E, E,
and F be nine vertexr sets, where

Al = [D1| = |Dy| = |Er| = [Ep| = k — 1,

o= [ e |52 e - [ 1 |25

We add all edges within each set, and between the following 14 pairs (where i =1,2):

(Av Cz)a (017 02)7 (Cw Di)7 (Div Ei)’ (Dia F)> (Ez'a F)’ (Ba Ei)7 (Av B)



Figure 3. A graph G with a(G) = 3, and no k-connected subgraph on at least [n/3] vertices.

We see that «(G) = 3, even for 3 < k < 6, when we have F' = (). Also,

27(k — 1

{7(4)]—1 if & is odd,
e

{(4)}—2 if k is even.

Now, BUC U F'is a cut-set for G with at most k — 1 vertices, so that any k-connected
subgraph must be within either H; = GIBUC, U D, UE; UF] or Hy = G — {D U E}.
Since Dy and E; are cut-sets for Hy, clearly, the largest k-connected subgraph of H; is
G[D, U E, U F|. For Hy, we have BU Cj is a cut-set with £ — 1 vertices. This means that
any k-connected subgraph of Hy must be within either H; = G[B U Cy U Dy U E5 U F)| or
H, = G[AUBUC, UC,]. Since Dy and E, are cut-sets for Hy, and A is a cut-set of Hy,
all with k — 1 vertices, it is clear that the largest k-connected subgraphs of H; and H, are
G[DyUE,UF] and GJAUC; UC,], respectively. Finally, it is easy to check that G[AUC; UCs)
and G[D; U E; U F], for i = 1,2, all have at most [n/3] — 1 vertices.

Proof of Theorem 6. In outline, the proof will be carried out as follows. We will proceed
by contradiction, and assume that there is a graph G of order n satisfying the conditions
of the theorem, but with the conclusion being false. Then, whenever we encounter a k-
connected subgraph of G, we assume that it has fewer than [n/3] vertices. Also, whenever
we encounter a subset with at least [n/3] vertices, then we assume that the subset does not
induce a k-connected subgraph of G. We repeatedly use the fact that no four vertices of
G can be independent. We end up arriving at a contradiction, where in certain cases, we
obtain a k-connected subgraph of order at least [n/3].

We now present the proof of the theorem. Suppose that k > 3, and G is a graph with
order n and independence number 3, where n is as in the statement of the theorem. Assume
that the conclusion of the theorem is false, so that any k-connected subgraph of G has at

most 2! vertices. For the sake of clarity, we will only fully present the proof of the case

3
with the lower bound of n > %

that the remaining cases are:

, for all k > 3, instead of the one as stated. This means

10



_ 27(k—1 27(k—1)—1
(A) k=0 (mod 4) and n = (#} —1:%7

— 27(k—1 27(k—1)-3
(B) k=2 (mod 4) and n = [2EZD) _q = 2113
To deal with cases (A) and (B), the crucial fact to note is that:

n—2

for case (A),

for case (B).

By using this improved upper bound for the order of any k-connected subgraph of GG, instead
of the upper bound of %71, the proofs for cases (A) and (B) will remain the same as the proof
that we will present, only with minor adjustments to several inequalities. We will indicate
in a footnote whenever an inequality requires an adjustment.

Thus, let n > %. Since G itself is not k-connected, we can write

V(G)= A, UA,US with [S| < k—1, |A],|Ay| >0, BE(A;,Ay) =0,

and we may suppose, without loss of generality, that G[A,] is complete and a(G[A4,]) < 2.

Since G[A,] is k-connected if |Ay| > k + 1, we must have |Ay| < “zL. Consequently,

|A;| > 22l — (K — 1) > 2, so that G[A;] cannot be k-connected. Therefore, we can write
A=A UARUS with [STI <k -1, 0<[Ay| < [Ap|, E(An, Ayp) =0,

and where G[A;] and G[A5] are both complete. Now, a(G[A;]) < 2 implies that for all
v € 8%, we must have either A;; C I'(v) or Ajy C I'(v). Hence, we can write

S*=S7US5,
where
Sy ={veS | A, Ccl(v)} and Sy =S5"\S5,

so that for all v € ST, we have A;; C I'(v).
Now, suppose that |Ay| < k — 1. If |[Aj5| > |Ay1| > k, then note that

% X n—2k-—1 n n
max{[Ay; U Si|, [A12 U Sy} > (2) =5~ (k—1)> 3
and so either G[A;; U S7] or G[A;5 U S3] is a k-connected subgraph with more than %

vertices, a contradiction. Otherwise, we have [Ay;| < k—1, so that [Ay| > n—4(k—1) > %,
and G[A;,] is a desired k-connected subgraph, another contradiction. Therefore, we have
|As| > k. We define S3 C S such that G[Ay U S3] is k-connected and |S3| is maximum. In
the caselthat |Ay] = k and no S3 C S makes G[Ay U S3] k-connected, we let Sg = (). Clearly,
we have

n—1
| A U Ss] < T (4)

Thus, we record the following useful fact, by utilising the maximality of |Ss]:

|Ag| > k, and for all v € S\ S5, e(v, Ay) < k — 1, so there exists w € Ay \ T'(v). (5)

"4, U 85| < 252 if (A) holds; |Ay U Ss| < 252 if (B) holds.
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Since «(G) = 3, this means that for all v € S\ S3, we must have either A;; C I'(v) or
Ay C I'(v). We can write
S = Sl U SQ U Sg,

where

Sy={veS\S3| A CT(v)} and S; =85\ (SUS3),
so that for all v € S}, we have A;; C I'(v). We note that:

Every vertex of Ay (resp. Aqy) dominates A;; US; UST (resp. Ajo U S, US5).  (6)

The situation at this point is illustrated in Figure 4.

~ All S _

7|

|
A, | S* Si }§k1 Sy | [<k—1 A,

S5
|

/ Sy
A12

Figure 4. Hlustration for the proof of Theorem 6. Shaded sets indicate complete graphs.

Now, in addition to (5), it is convenient to record bounds on the sizes of some other
subsets that we have defined. Suppose that |A;5| > [A11| > k. In view of (4),

max{]AHUSlUST\,\AUUS’QUS’;\}2 5 > 6 > 3

By (6), this means that either G[A;; U S; UST] or G[A;5U S, U S5] is a desired k-connected
subgraph, a contradiction. Therefore, we have

A <k—1. (7)

From (4) and (7), we have®

k=1 S (s

|Ajo] >n — Ay U Ss| — |Apy| — S| —|S7| > 5 2

2 1
"L 31>
3
In view of (6) and (8), we see that G[A;, U S, U S5] is k-connected. We define N to be a
subset of S; U ST such that
H=G[NUA;,US,US5] (9)

| Ars] > 2 3(k—1) > @ >k if (A) or (B) holds.

12



. . . 3
is k-connected and || is maximum. Thus”,

-1
|H|§n3 . (10)

Let
L=S5/\N and L*:ST\N,

and note that
e(v, NUA;,US,US;)<k—1forallve LUL". (11)

By (4) and (10), we have®

* 2 _9k-1
|A11ULUL\2n;— > (4 ).

At this point, we briefly remark that, by (7) and (12), we have 242 < |A;;ULUL"| < 3(k—1),
which gives n < 9(k — 1). Thus, we have proved the version of Theorem 6 with the much
weaker lower bound of n > 9(k — 1), since we would now have a contradiction. Indeed, the
argument up to this point is very similar to the proofs of Theorems 2 and 4.

By (12), we may assume that G[A;; U L U L] is not k-connected. We may write

(12)

AZULUL" = BiUB,UT with [T'| <k —1, |By|,|By| >0, E(By,By)=0.

Let B = B, U By. From (6), we see that every vertex in A;; dominates A;; UL U L*. This
means that we must have

Ay cT and BCLUL®. (13)
Using |T') < k —1, |L| < k —1, (12) and (13), we have’
5(k—1 " k—1
B| > (4) and |BOLY> ", (14)

so that BN L* # (). Furthermore, since G[A; U S; U S,] is not k-connected, we can write
AJUS; US, = AUAUT with |T| <k —1, |A],|A'| >0, E(A,A")=0.

Since |B| > k by (14), and |T| < k — 1, we have BN (AU A") # 0. By symmetry of (A, A’
and (By, By), we may assume that AN By # (). From (13), we have

0#+ANB, CLUL". (15)
The following three lemmas will be very useful in our subsequent arguments.

Lemma 8. There cannot exist three independent vertices x,y,z with x,y € A, and z €
ALUS US,.

Proof. If x,y,z € Ay, then a(G[A;]) < 2 implies that {z,y,z} cannot be independent.
Otherwise, z,y € Ay and z € S; USy. By (5), we can find w € Ay \T'(2). If {z,y, 2} is an
independent set, then so is {x,y, z, w}, and this contradicts a(G) = 3. O

°|H| < 252 if (A) holds; |H| < "3* if (B) holds.
‘A ULULY| > 2% = %4 if (A) holds; [Ay ULUL"| > 248 = =2 if (B) holds.
°|B] > 2k and |[BNL*| > 544 if (A) holds; |B| > %52 and BN L*| > 45 if (B) holds.
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Lemma 9. Suppose that there exist v € L™ and z € LU L with zz ¢ E(G), and at least
one of x and z is in A. Then |A'N (AU S3)| <k —1.

Proof. Assume that |[A' N (A;5 U S3)| > k. If 2 € A, then in view of (11), we can find
y € (A'N(A15U83))\I'(2). But then {z,y, 2z} is independent, contradicting Lemma 8. A
similar argument holds if z € A. O

Lemma 10. Suppose that By N L* = (). Then |A;5 U S5| < 2(k —1).

Proof. Note that since BN L" # () by (14), and B, N L* = (), we can pick z € B; N L". Also,
pick z € By, C LU L" by (13). Then, we see that A;5U S5 C I'(x) UT(2), or else we can find
y € (AU 85)\ (T(x) UL (2)) with {x,y, 2} independent, contradicting Lemma 8. By (11),
we have |A5 U S5| < 2(k — 1), as required. O

We now derive some key properties for the sets A, A" and T.

Claim 11. A'NnA4;; = 0.

Proof. Suppose that A' N A;; # 0. In view of (6), since every vertex of A;; dominates
A;US,UST, we have A;;US;US] ¢ A'UT. Thus B; € A;;ULUL" ¢ A;;US;UST ¢ A'UT,
and this contradicts AN By # (0 in (15). O

Claim 12. AN A, = 0.

Proof. Suppose that AN Ayy # 0. It then follows from (6) that A1, U S, US; € AUT.
If AN Ay, # 0, then again by (6), we have A; US; USy, C AUT, a contradiction. Thus,
AN Ay =0, and with Claim 11, this implies that A;; C T. Together with |T'| < k — 1, and
|A1; UL*| > k by (12), this means that (AU A") N L* # (). Assume now that |A N Ajy| > k.
If 2 € AN L*, then we pick y € (AN Ayy) \I'(z) by (11), and z € A’; and if z € A'N L,
then we pick 2 € AN B; C LUL" by (15), and y € (AN A;5) \ I'(2) by (11). In either case,
{z,y, z} is independent, contradicting Lemma 8. Consequently, |A N A5 < k — 1.

Now, since AN Ay # ) and G[A;5] is complete, we have A'N A5 = ). Since A, C T, we
have [A1; U Apy| < |T|+ |AN Ayg| < 2(k —1). Thus [Ay] > n —4(k — 1) > %, contradicting
(4). O

Claim 13. AN A, #0, and A C A;; US; UST.

Proof. Since AN Ay = (0 by Claim 12, and |T| < k — 1, we have |4’ N Ap| > % by (8),
and the first part follows. The second part then follows since A" N A5 # @ and (6) imply

Claim 14. A M All 7é Q), a’ﬂd A/ C A12 U SQ U S;

Proof. Tt suffices to prove the first part, since then AN A;; # § and (6) imply A" N (A}, U
S; U ST) = 0. Suppose that AN Ay; = 0, so that Claim 11 implies A;; C 7. We first prove
that

|A" N Apy| > k. (16)
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Otherwise, suppose that |A'N A5 < k—1. Since A;; C T, and AN A5 = () by Claim 12, we
have |A;; UAp| < |T|+]A NAp| <2(k—1). Thus |Ay| >n—4(k—1) > %, contradicting
(4). Thus (16) holds.

Now, we consider two cases.

Case 1. BN L" # ().

Taking # € BoNL", and 2z € ANB; C LUL" by (15), we see from Lemma 9 that
|A" N Ay < k — 1. This contradicts (16).

Case 2. ByNL" =10.

We first show that |Ay] < 2(k —1). Picku € ANB; C LUL" by (15), 2€ By C LUL"
by (13), and v € (A’ N Ay5) \ T'(2) by (11) and (16). Then {v,u, z} is independent, and so
u, z € L, otherwise we have a contradiction to Lemma 8. We have Ay C I'(u) UT'(2), or else
we can pick w € Ay \ (I'(w) UT'(2)) with {v,u, z,w} independent, contradicting o(G) = 3.
By (5), we have |Ay| < 2(k — 1), as required.

Next, we show that B; N L™ C T. Otherwise, if we have z € AN B; N L", then we pick
2 € By C LUL" by (13); and if we have z € A'NB; N L*, then we pick z € ANB; ¢ LUL*
by (15). In either case, Lemma 9 implies |A' N A;5| < k — 1, and this contradicts (16). Thus
(AUAYNB,NL* =0, and B; N L* C T as required.

Together with B, N L* = (), we have |[TNL*| > |B;NL"| = |[BNL"|. In view of A;; C T,
IT| < k-1, and (14), we have®

* « _ 3(k—-1
A | <|T|—|TNL | <|T|-|BNL y<(4)'
Since By N L* = (), by Lemma 10, we have |A5| < |45 U S5 < 2(k —1). Thus’

27(k — 1)

n = |An |+ [Awp| + Ao + 15|+ 157 < —

This contradicts the hypothesis on n. O
Claim 15. N CT.

Proof. We have A’ N = () since A" € A;5U S, U S5 from Claim 14. Also, if v € ANN # (),
then since A'N Ay # 0 by Claim 13, we have TNV (H) is a cut-set of H with fewer than
k vertices which separates v from a vertex of A’ N A5, contradicting that H is k-connected.
Therefore, ANN =, and N C T. O

To summarise, at this point we know the following, which one should constantly keep in
mind for the rest of the proof of Theorem 6.

AC A ULULY, A cA,USUSs, ANAs#0, NcCT. (17)
The first fact in (17) follows from A C A;; U S; US] and N C T. We also note that:

A (resp. A’) is disjoint from any subset of A;5 U Sy U S5 (resp. A US; UST). (18)

%1 411] < 358 if (A) or (B) holds.
n < 215 i (A) or (B) holds.
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We now split the proof of Theorem 6 into two cases. Recall that BN L* # ) from (14)
and AN By # () from (15).
Case 1. BoNL* #10).
Subcase 1.1. ANB;NL" #0.

Suppose that ]A/| > k. We can pick x € ANB; NL" and y € By N L*, and since
A A5 U S, U Sy by (17), we can pick z € A"\ I'(y) by (11). But then {z,y,z} is
independent, contradicting Lemma 8. Thus |A'| < k — 1, and hence by (4),

2n+1

— A= |T| > —2(k—1) >

n
3"

Now, we have A C A;; ULUL" by (17). Since |L| < k — 1, we have [A\ L| > % —
(k—1) > k—1, so that |[A\ L| > k. Also, G[A\ L] is a clique. Otherwise we can pick
z,y € A\L C Ay, UL" with zy € E(G), and z € A’, so that {z,y, 2} is independent,
contradicting Lemma 8. Finally, every vertex of AN L dominates A\ L. Otherwise, we can
pick z € A\ L and z € AN L with 2z ¢ E(G), and y € A' N Ay, by (17), so that {z,v, 2} is
independent, contradicting Lemma 8. Therefore, G[4] is a k-connected subgraph with more
than g vertices, a contradiction.

Subcase 1.2. ANB,NL" =0.

Pick z € AN B, C L by (15). If we have € AN By N L*, then we can pick y € A'N Ay,
by (17), so that {z,y, 2} is independent, contradicting Lemma 8. Consequently, we have
ANB NL* =ANB,NL =0,s0 ANBNL*=0. Since ANBNL" = by (18), we have
BNL" CT. Next, we pick © € By N L*, and with z, we obtain |4’ N (A5 U S3)| < k—1 by
Lemma 9. Therefore, since AN (Aj3US5) =0 by (18), N C T by (17),and BNL* C T, we
have

[A1 US|+ [N|+ BN LT < |A'N (A1, U S5)| +|T] < 2(k — 1). (19)

Now, recall that A;; € T" by (13). Then we see that A; US; U Sy can be written as
follows.
AUS USy = (A, USHUNU(BNLHYUT U(BNL)US,.

Hence by (4) and (19),

2n+1
IT'| + |[BNL| + |S,| >

—2(k—1) > 2(k — 1).

On the other hand, 7" U (BNL) U S, C T'US, so that |T'|4+|BNL|+|Ss| < |T'|+|S| < 2(k—1).
We have a contradiction. This completes the proof of Subcase 1.2 and also of Case 1.

Case 2. BoNL* =1).
Note that by (13) and (14), we have

By CL, and B;NL"= BNL"isnon-empty. (20)
We begin by deriving bounds for the sizes of certain sets.

Claim 16. |Ay| <2(k—1).
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Proof. Suppose that |[Ay] > 2(k — 1). We first note that:
There cannot exist * € A; and u,z € A; US| USy with {z,u, z} independent. (21)

Otherwise, in view of Lemma 8, we have u,z € S; U Sy, and by (5), we can find w €
Ay \ (T'(u)UT(z)). But then {z,u, z,w} is independent, contradicting a(G) = 3.

This means that G[A] is a clique, since if we have u,z € A and uz ¢ F(G), then taking
x € A'N Ay, by (17), we have {x,u, 2} is independent, contradicting (21).

Next, we prove that B; N L* € T. Note first that A'NB; N L* = ) by (18). Suppose that
we have ANByNL* # 0. If |A’| > k, then we can pick € ANB;NL", u € By C L by (20),
and z € A"\ T(u) by (11) and A" C A1, U S, U S5 in (17), so that {x,u, 2} is independent,
contradicting (21). Thus, we have |[A'| < k — 1. Since [A; U S; U Sy| > 2% by (4), and
IT| < k—1, we have G[A] is a k-connected subgraph on at least 251 —2(k —1) > 2 vertices,
a contradiction. Therefore, (AU A )N B, NL* =0, and B; N L* C T follows.

Now, we have |A' N (A, U S3)| < k — 1. Otherwise, we can take u € By C L by (20),
z € (A'N(A15US83))\I'(u) by (11), and z € AN By by (15), so that {x, u, 2z} is independent,
contradicting (21).

From (18), we have AN (4,5 U S5) = 0. Thus by (8),

* " " k—1
TN (A1 US5)| =|A15U 85| — |A'N (A, U S5)| > 5

Together with ByNL* C T and |T| < k— 1, we have |B; N L*| < % If k = 3, then we have
a contradiction to B; N L* # @ in (20), so let k > 4 for the remainder of the proof. Since
Ay € T' by (13), together with (20), we have A;; ULUL* = (BNL)U(BNL)YUT =
(BN L)U(B; NL*)UT'. Therefore by (12),
w_ S(k—1

|IBNL|=|A; ULUL*| —|T'| = |B; N L*| > (4),
which implies [Sy| < [S|—|BNL| < £7L. Since [A'N(A;pUS5)| < k—1,and A’ C A1,US,US;
by (17), we have |A"| < @. Thus by (4), G[A] is a k-connected subgraph on at least

-1 . L
il _ |A'| —|T| > il _ % > 7 vertices, a contradiction. O

By (7) and Claim 16, we have®

" T(k—1
Al =n— |4y ] - 187 - 18] - 45 > TEZY, (22)
Also, since By N L* = (), we have [A;5 U S5| < 2(k — 1) by Lemma 10, and thus’
" « 3(k—-1
Al =n— |Ay] — || - |8} — [ Ay U5 > 2EZD). (23)

Now, we proceed by proving several claims.

Claim 17. AN By = 0.

®|Ayp| > T8 if (A) holds; |A;,| > 710 if (B) holds.
|Ay| > 224 if (A) holds; |Ayy| > 2559 if (B) holds.
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Proof. Suppose that we have z € AN By, C L by (20). Note that AN B, NL" = 0
by (18). If we have z € AN By N L¥, then pick y € A" N A5 by (17), so that {z,y, 2}
is independent, contradicting Lemma 8. Hence, we have (A U A') NB; NL" =0, and
BNL*= B, NL" CT by (20). Next, taking z € B; N L* by (20), and z, and applying
Lemma 9, we have |A'N (45U S3)| < k — 1. Finally, AN (A5 US3) = 0 by (18). Together
with (14) and |T| < k — 1, we have™

A <A US3| = [A"N (A US3)[ + TN (A U S3)
<|A'N(ApUSH)|+|T|— T NL

(k- 1)

1

which contradicts (22). O

< AN (AU S3)+ T = [BNLT| <

Since A'N B = § by (18), together with Claim 17, we have B = (AN B)U(T N B) =
(AN B;)U(T N B), and thus

|B|=|ANB;|+|T'NBj. (24)
Claim 18. ByNL"CT.

Proof. Since A'NB; NL = () by (18), it suffices to prove that AN B; NL* = (). Assume that
ANB,NL" #0. Fixx € ANB;NL", and 2 € B, C L by (20). By Lemma 9, we have

|A' N A < AN (AU S3)[ <k—1. (25)
Also, AN (A5 U S3) =0 by (18). Together with (22), (25), and |T| < k — 1, we have'’
T\ (A1 U Sy)| = |T| = TN (A2 U S3)]
= |T| = (A1 U S3)| = |[A"N (415 U S3)])
< T +14' N (A1 U S5)| — |4l < “ 7 (26)

Next, we show that G[AU Ay;] is k-connected. Assume otherwise. Note that every vertex
of AN L* dominates AU A;;. Otherwise, we can pick 2’ € ANL* and 2’ € AU A;; with
2’2 ¢ E(G), and y € A' N Ay, by (17), so that {z’,y,2'} is independent, contradicting
Lemma 8. Since AUA;; C A;; ULUL" by (17), together with (6), (ANL*)U A;; consists of
dominating vertices of AU A;; and so must be contained in a cut-set for G[AU A;;]. Thus,
we have |[ANL*|+|A;;| < k—1. Also, A'NL* = () by (18), so that |L*| = |ANL*|+|TNL*|.
Again by (18), we have AN A5 = ), so that |Aj5] = |A' N Ajy| + |T N Ayy|. Together with
(12), (25), and |T| < k — 1, we have'?

|Ag| = [A' N Ag| + [T N Ayg| < |A'N Agg| + T — |T N L
=|A"NAp|+|T| - (IL"| - [ANL7))

7k —1)

=|A'NAp|+|T|+ (JANL* |+ |Ay]) — A UL < 1

1 App| < T2 f (A) or (B) holds.
“\T\(A12USQ)\ < B if (A) holds; |T'\ (4,5 U S5)| < ££2 if (B) holds.
| Ay5] < ™12 if (A) or (B) holds.
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which contradicts (22). Therefore, we have G[A U Ay;] is k-connected. In particular'®

-1
Al < JAUAy| < . (27)

Now, we have A'UA;,US; C A15US,US5 by (17). Suppose that A'UA;,USs C T'(x)UL(z).
Then |A'U A1, U S5| < 2(k — 1) by (11). Also, note that

AUAUT =AU (T\ (AU S3)) U (A U A, USS).
Therefore, together with (4), (26) and (27), we have'*

2n + 1 —1 9k-1)

3 + 4 7

<A+ [T\ (A U S3)| + |4 UAp U Sy < &

which implies15 n < W’ contradicting our hypothesis.

This means that we can find u € (A" U Ay, U S3) \ (D(x) UT(2)), and thus {z,u, 2} is
independent. Since A" U A15U Sy C Aj5 U S, U Sy, we have u € (A'NSy) \ (T'(z) UT(2)),
otherwise we have a contradiction to Lemma 8. Now define

Sy = 83\ ((2) UT ().
In view of z,u € S\ S; and the maximality of Sy, we have e(z, Ay U (S5 \ S3)) < k — 1 and
e(u, Ay U (S5\ S3)) < k — 1. Moreover, we must have Ay U (S5\ S5) C I'(2) UT(u), otherwise
we can take w € Ay \ (I'(2) UT'(u)), and {z, z,u, w} is independent, contradicting a(G) = 3.
Consequently,
A U (S3\ S3)] < 2(k — 1). (28)
Now, if S5 # ) and v € S5, then v dominates A N By. Otherwise, if there exists v €
AN By with v’ ¢ E(G), then {z,u,v,v'} is independent, contradicting a(G) = 3. Since
TNBCT\ (A;5US83), by (14), (24) and (26), we have

|ANBy|=|B| = |TNB| = |B] =T\ (A1 US)| > k-1,

which implies |A N By| > k. Since G[AU Ay4] is k-connected and AN B; C AU Ay, we have
G[AU A, U S5 is also k-connected (whether S5 is empty or non-empty).

Finally, from the definition of the subgraph H in (9), and A'N (A4;; US, US]) = 0 by
(18), we have A;; US; US] C AU (T \ (A13US3)), and A5 U S, US; C V(H), and thus

V(G) = (AUA; USE) UV(H)U(T\ (A1 U S3)) U (A3 U (S5 )\ S5)).
By (10), (26) and (28), we have'®

[AUALUSs| >n— |[H| =T\ (412U S5)] = |43 U (83 \ S3)]
>2n+1_9(k—1) -
- 3 4 -3

Hence, G[AU Ay, U S5 is a k-connected subgraph on at least g vertices, a contradiction. [

|A] < 222 if (A) or (B) holds.
Mand2 < | A| 4|7\ (A US| + A U A, US| < 252 4 %526 if (A) or (B) holds.
P < 21EDZT 5 (A) or (B) holds.

O] AU Ay U Sh| > 2082 958 5 nf (A) holds; |AU Ay, U Sy > 22 — 9=6 > 1 if (B) holds.
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Now, by (14) and (24), we have'”

k—1
[AyNB|=|B|~|TNB| >~ (29)

In view of B, N L* = () and Claim 18, we have L* = (B;NL*)U(T'NL*) c TUT'. Also,
since AN (A5 US5) =0 by (18), we have A;5US; C TU (A 'N(A;5US3)). Since Ay ¢ T
by (13), and N C T by (17), we have

A CAJUL UNUARUS; cTUT U (A N(A15US3)).
If |A"N (A1, U S5)| < k — 1, then together with Claim 16, we have
n = [Ay] + [ Ag| + |S| < T+ [T7] + A" N (A U S5)| + | 4| + |S] < 6(k — 1),
a contradiction. Consequently,
|A"N (A5 U S3)| > k. (30)

Now, recall that By C L from (20). For the rest of the proof of Theorem 6, we fix the
vertex z, where

z€ By CL. (31)
Define

M=T()NNNS], M=(NnS)\M, Q=AUA,UL" UM (32)
Claim 19. G[Q] is either a k-connected subgraph, or a clique on k vertices.

Proof. We first note that:
Every vertex of L* dominates A;; U (AN By). (33)

Indeed by (6), every vertex of L* dominates A;;. Also, if we have 2 € L*, and 2’ € ANB; C
LUL" by (15), with 22" ¢ E(G), then Lemma 9 implies |A' N (A}, U S3)| < k — 1, which
contradicts (30).

Next, we show that G; = G[A;; U (B; N L") U (AN B;)] C G[Q] is complete. Obviously
by (6), every vertex of Ay; dominates V(G;). In view of (33), it suffices to show that both
G[B; N L*] and G[A N B,] are complete. If x,y € By N L" and zy ¢ E(G), then {z,y, 2}
is independent, contradicting Lemma 8. If u,v € AN By and uv ¢ E(G), then we can pick
w € (A'N(A15US3))\T'(2) by (11) and (30), so that {u,v, z,w} is independent, contradicting
a(G) = 3. Tt follows that G is a clique.

Now since AN B; C LU L" by (15), we have A;; N (AN B;) = (. Thus by (23) and (29),
we have |Ay; U (AN By)| > k. By (33), we see that every vertex of L* \ V(G;) has at least
k neighbours in Gj.

Similarly, by (14), (20) and (23), we have |A;;U(B;NL")| = |A;;U(BNL")| > k. Moreover,
every vertex of (AN L) U M’ dominates Ay U (B N L¥). Indeed, if v € (AN L) U M’, then
obviously v dominates A;; by (6). If z € B; N L™ and zv ¢ E(G), then we can again apply

|AN By| > B+ if (A) holds; AN By | > *£9 if (B) holds.
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Lemma 9 to z and v if v € ANL, and obtain a contradiction to (30); or {z, v, z} is independent
if v € M’', contradicting Lemma 8. Therefore, every vertex of (AN L)U M')\ V(G;) also
has at least k neighbours in G;.

Now since A C A;; UL UL by (17), it follows that V(Gy) UL* U (ANL)U M =
AUA{UL* UM = Q. We conclude that G[Q)] contains the clique G with at least k vertices,
while every vertex of @ \ V(G;) has at least k neighbours in G;. Clearly, |Q| > |G| > k.
Consequently, if |Q| = k, then @ = G, is a clique on k vertices. Otherwise, if |Q| > k, then
G[Q)] is k-connected. O

Now, recall that z € L from (31), and M =T'(z) " N N ST from (32). We let
X =T(2)N(A;5US,US;) and X' =XnNS5,. (34)
Note that since M UX C I'(2) NV (H) and z € L, we have by (11),
IMUX|<k-—1. (35)
We define the subgraph
H =G[(B,NLYUM UA;,U (S, \ X )US;). (36)

Then note that H' is not k-connected. Otherwise, since A1, C V(H)NV(H') and |Ao] > k
by (8), if H and H' are k-connected, then HUH' = G[(By N L*) UN U Ay, U S, U S3] would
also be k-connected. This contradicts the definition of N in (9), since B; N L™ # 0 by (20).
We may write

V(H'Y=DUD UT" with [T"| <k -1, |D|,|D'|>0, E(D,D)=0. (37)

Since |Ajs| > k by (8), we may assume that D' N A}y # . We now obtain some facts. In
view of (6) and Ao U (Sy\ X')US; C A15US,U S5, we have D C (B;NL*)UM’. Together
with z € B, from (31), and the definition of M’ in (32), we have

L(z)Nn((ByNL*Y)UM')=T(z)nD = . (38)

Now, G[(B;NL*)UM] is a clique, since if we have z,y € (B;NL*)UM’ and zy & E(G), then
{x,y, 2} is independent, contradicting Lemma 8. Consequently, since D C (B; N L") UM !
we have

Dc(BynLYuM cDuT". (39)

Finally, since B; N L* C T by Claim 18, and M’ € N C T by (17) and (32), we have
Dc(BnLYUuM cT. (40)

Claim 20. We have'®
3(k—1)

|D| >
4

(41)

¥|D| > 3E=1 if (A) holds; |D| > 2£25 if (B) holds.
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Proof. Recall that z € B, C L from (31), and X = T'(2) N (A5 U Sy U S5) from (34). Let
Y = (A, US3)\ X Cc V(H.

We see that Y N ((ByNL*)UM') = (}, and Y consists of all non-neighbours of z in A5 U S.
Now, note that every vertex of (B; N L*) U M’ dominates Y. Otherwise, we can find = €
(ByNLYUM and y € Y with 2y ¢ E(G). By (38), {z,y, 2} is independent, contradicting
Lemma 8. Consequently from (39), we have Y c T".
Now, Ay; CT' by (13); L* cT"U (BN L) =T U(B,NL") by (20); NNST =MUM
by (32); and A}, US; C X UY. Together with (39) and Y ¢ T”,
Al :AHUL*U(NHST)UAHUS;
CcT'UBNL ) YUMUM UXUY
cT'uT"uDU(MUX).

Therefore, since [Ay| < 2(k — 1) by Claim 16, and |M U X| < k — 1 by (35), we have

k—1
DI 20— |Ay] 18]~ |7 - 1|~ [aru x| = 2E 2L,

Claim 21. There exists u € A' N Sy with E(u,D U {z}) = 0.

Proof. Recall that z € L from (31), and V(H') = (ByNLYUM U A, U (Sy\ X)USs =
DUD'UT", as defined in (36) and (37). Pick € D C (B; N L¥) U M’ by (39), and let

Z = (A'nSy)\ (T(2) UT(z)).

Note that from the definition of X’ in (34), we have Z C S, \ X' C V(H'). We claim
that D' N Z # (. Assume that D' N Z = (). Since ZN ((B; NL*)UM') = (), and D C
(By N L*)U M’ from (39), we have D N Z =, and thus Z C T”. Again from (39), we have
D' C A, U(Sy\ XYUS; ¢ D'UT”. Since z € D, we see that I'(x) N (D' U Z) = (). Thus

e(z, Aa U (S \ XU Sy) < |T"\ Z|.

Also, recall that A" € A5 U Sy U S5 from (17). Then note that A"\ Z C T'(z) UT(z).
Otherwise, if we can find y € (A"\ Z)\ (I'(z) UT'(z)), then we have y € A'N(A;5,US5). Since
xz ¢ E(G) by (38), we have {z,y, z} is independent, contradicting Lemma 8.

Since Z C A’, we have |A'| = |A"\ Z|+|Z|. Likewise, Z C T" implies |T"| = |T"\ Z| +|Z|.
Since | X| < |[M UX| <k —1 by (35), we have

A=A\ Z| + 2|
< |(P(z) UL (2)) N (A1 U 82 U S5)| + 1 Z]
< |X]+e(@, A U (S \ X) U S3) + 2]
<X+ |77\ 2| + 2]
= 1X] +17”]
<2(k-1).

¥|D| > 3524 if (A) holds; | D| > 2£=C if (B) holds.
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Now, since D C (By NL*)UM' € QN T by (32) and (40), we have |T\ Q| < |T| — |D.
Also, in view of (18) and (32), we have A’'NQ = 0, so that A € Q € AUT, and thus
|A|+|T| = |Q| + |T\ Q|. Together with (4), (41), |T| < k—1, and |A| < 2(k — 1), we have®

2n+1
Q= n 14,08~ |4 - 1T\ Q| > 7
- 2n+1  9(k—1) S0
- 3 4 3
By Claim 19, G[Q)] is a desired k-connected subgraph, a contradiction.
Therefore, we have D' N Z # (. Claim 21 now follows by takingu € D'NZ c A'NS,. O

— |l =171+ |D|

> k.

Let u € A'N S, be as in Claim 21, and recall that z € By C L from (31). Define
Sy = S3\ (N(2) UT(w)).

In view of z,u € S\ S; and the maximality of S, we have e(z, Ay U (S5 \ S3)) < k — 1
and e(u, Ay U (S5 \ S3)) < k — 1. Moreover, we must have A, U (S5 \ S5) € T'(z) UT(u).
Otherwise, we can pick 2 € D C (B; N L") UM’ by (39), and w € A, \ (I'(z) UT(u)). By
(38), and F(u, D U{z}) = 0 in Claim 21, we have {z, z,u,w} is independent, contradicting
a(G) = 3. It follows that

A2 U (S5 \ S5)| < 2(k —1). (42)

Now, if S5 # () and v € S5, then v dominates (AN B;) U D. Otherwise, if there exists
v € (AN B))UD with vv' ¢ E(G), then again by (38) and E(u, D U {z}) = ), we have
{2z,u,v,v'} is independent, contradicting a(G) = 3. Also, note that since D C T by (40), we
have (AN By)N D = 0. Thus, |[(AN B;)UD| >k by (29) and (41). Since (AN B;)UD C
(ANB)U(B;NL*)UM C Q by (32) and (39), this means that every vertex of S5 has at
least k neighbours in Q.

Finally, note that since A’ N L = § by (18), we have L \ A C T. Moreover, since
D c (ByNL*)UM' by (39), we have DN (L\ A) = ). Therefore, L\ A C T\ D. From the
definitions of H and @ in (9) and (32), we have

QUV(H)U(L\A) = AUA ;UL UM UNUA;,US,USyU(L\ A)
:A1U51USQ,

which means that
V(G) = (QUS5)UV(H)U(T\D)U (AU (Ss5\ S3)).

Since D C T by (40), we have |T'\ D| = |T| — |D|. Together with (10), (41), (42), and
IT| < k — 1, we have

[QUS3| > n —[H|—|T\ D| ~ |43 U (S5 83)]

2n+1

> —|T| +|D| = [A5 U (S5 \ S3)]
2n+1 9(k—1) _n

> — — > k.

- 3 4 = 3 -

|Q| > 22 — 9kZB 5 n > kif (A) holds; [Q| > 2uE2 — %26 > 2 > k if (B) holds.
QUS| > k2 — %8 5 n s kif (A) holds; QU S5| > 23 — 926 > n 5 i if (B) holds.
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By Claim 19, it follows that G[Q U Sg] is a desired k-connected subgraph (whether Sy is
empty or non-empty), a final contradiction.
This completes Case 2, and the proof of Theorem 6. O

4 Conclusion

In this paper we have shown that, for sufficiently large n, any graph G of order n and
independence number « has a k-connected subgraph on at least [n/a| vertices. We presented
a construction for o > 4, which shows that in general we need approximately n > w
to guarantee a k-connected subgraph of order at least [n/a]. The determination of the
correct lower bound on n in general remains open. We have also determined precisely what
“sufficiently large” means in the cases a = 2 and o = 3. In these cases, our lower bounds on
n are accompanied by constructions showing that the bounds are best possible.

Finally, here is a related question. Suppose again that n is not in fact large enough to
guarantee a k-connected subgraph on at least [n/«| vertices. What is the largest k-connected
subgraph (as a function of a, k and n) that G must nonetheless contain?
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