
The Hales-Jewett Theorem

The Hales-Jewett theorem is one of the most important results in Ramsey Theory. It easily
implies many other results, and is a useful ingredient in many proofs. To state it, we need
some notation.
The n-dimensional t-cube [t]n is defined as

[t]n = {(x1, . . . , xn)} : 1 ≤ xi ≤ t},

where of course the xi are all integers. A subset L of [t]n is a combinatorial line if there
exists a nonempty set I ⊂ [n] and integers ai for each i 6∈ I such that

L = {(x1, . . . , xn) ∈ [t]n : xi = ai for i 6∈ I, and xi = xj for i, j ∈ I}.

Combinatorial lines are just ordinary lines in the cube, with the additional restriction
that, as one moves along the line, all the active coordinates (those in I) increase from 1
to t together, while the fixed coordinates (those not in I) remain constant. For instance,
there are 2t+ 1 combinatorial lines in [t]2: t horizontal lines, t vertical lines, and one (not
two) diagonals. From now on, “line” will always mean “combinatorial line”. Here is the
theorem.

Theorem 1. For all positive integers r and t, there exists a least integer n = HJ(r, t)
such that any r-coloring of [t]n contains a monochromatic line.

Proof. As in van der Waerden’s theorem, the key idea is color-focusing. Given a line L,
write L− and L+ for its first and last points (in the obvious ordering). Lines L1, . . . , Ls

are focused at f if L+
i = f for all i, and they are color-focused at f if all the truncated

lines Li \ {L+
i } are monochromatic of different colors. Note that these definitions exactly

match those in the proof of van der Waerden’s theorem.
A line in [t]n is specified by its first (or last) point, together with its “direction”, i.e., its
active coordinate set I. We will exploit this fact to cut down on the amount of notation
we need.
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Now to the proof itself. We use induction on t. The case t = 1 is trivial. Suppose we know
that HJ(m, t − 1) is finite for all m. Our aim is to show that, for a fixed r, HJ(r, t) is
also finite.
To do this, we will show, for each s ≤ r, the existence of a number N = FHJ(r, s, t) such
that any r-coloring of [t]N contains either

• A combinatorial line, or

• s color-focused lines.

The case s = r will imply the theorem, since the focus of r color-focused lines must receive
one of the r colors, extending a truncated monochromatic line to a full one: this is the
point of color-focusing.
Turning to the assertion, we again use induction on s. The case s = 1 is trivial: just take
FHJ(r, 1, t) = HJ(r, t − 1). Assume that we know that n = FHJ(r, s − 1, t) is finite. I
claim that

FHJ(r, s, t) ≤ N = n+HJ(rt
n

, t− 1) =: n+ n′.

Here is why: suppose we are given an r-coloring χ of [t]N , where N = n+n′. Consider this
first as a rt

n
-coloring χ′ of [t]n

′
, by associating each point b ∈ [t]n

′
with the entire χ-colored

cube {(a, b) : a ∈ [t]n}. By definition of n′ (this is the induction on t), there is a line L in
[t]n

′
, with active coordinate set I, such that the truncated line L \ {L+} is monochromatic

under χ′. What this means in terms of the original coloring χ is that, for all a ∈ [t]n, and
all b, b′ ∈ L \ {L+}, we have

χ((a, b)) = χ((a, b′)) =: χ′′(a).

Now we examine the coloring χ′′ of [t]n. By hypothesis (this is the induction on s), we can
find s − 1 color-focused lines L1, . . . , Ls−1 in [t]n, with active coordinate sets I1, . . . , Is−1
and focus f . All we need to do now is put the pieces together. For 1 ≤ i ≤ s− 1, define L′i
to be the line in [t]N with first point (L−i , L

−) and active coordinate set I ∪ Ii, and define
L′s to be the line in [t]N with first point (f, L−) and active coordinate set I. Unless [t]N

contains a monochromatic line, the lines L′i, for 1 ≤ i ≤ s, form a set of s color-focused
lines, with focus (f, L+).
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