Hindman's Theorem

For real numbers zy, ..., z,, we define FS(zy,...,x,) to be the set of (nonempty) finite
sums of the x;, so that

FS(z1,...,2,) = {Zmizﬂ%lc [n]}

iel
Hindman’s theorem states the following

Theorem 1. Any finite coloring of the natural numbers contains an infinite set A such
that FS(A) is monochromatic.

We will deduce this from an equivalent set theory version of the result. Let [’ be the set
of finite nonempty subsets of N. For ) # A C F, f(A) denotes the set of finite unions of
members of A, excluding the empty union. A set D C F' is said to be a disjoint collection
if D is infinite and its members are disjoint.

Theorem 2. For any finite partition of F' into sets Fy,..., F,, there exists an i and a
disjoint collection D C F; such that f(D) C F;.

Theorem 1 follows easily from Theorem 2 by identifying a set A € F with the natural
number » ., 2i=1 Specifically, a finite coloring of N yields a finite coloring of F, which,
by Theorem 2, yields a disjoint collection D such that f(D) is monochromatic. Sets in D
correspond to natural numbers, and finite unions of sets in D correspond to finite sums of
those numbers. (Note that a partition of F' into sets Fi, ..., F, is just an n-coloring of F.)

The following definition is the key to the entire proof. If A C F and D is a disjoint
collection, we say that A is large for D if, for every disjoint collection D' C f(D), f(D')N
A # (). For example, viewing N as a disjoint collection of singletons, the set of even-sized
subsets of N is large for N, but the set of odd-sized subsets is not.

The next two lemmas show that a large set “almost” survives partitioning.
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Lemma 3. If A is large for D and A = Ay U As, there is a disjoint collection D" C f(D)
such that either Ay or As is large for D'.

Proof. Suppose not. Since A; is not large for D, there is a disjoint collection D" C f(D)
such that f(D’) N A; = (. Since A, is not large for D', there is a disjoint collection
D" C f(D') such that f(D”)N Ay = (. Therefore f(D”) N A = (), contradicting the
assumption that A is large for D. O

Lemma 4. Suppose that F' is partitioned into sets Fi, ..., F,. Then there is some i and
a disjoint collection D such that F; is large for D.

Proof. Inductively apply Lemma 3. [

Suppose that A is large for D. The goal of the next three lemmas is to show that a certain
cleverly-chosen subset of A is still large for some disjoint collection D’ C f(D).

Lemma 5. Suppose that A is large for D. Then there is a finite set E C f(D), whose
members are disjoint, such that for all d € f(D), if dN (UE) = (), there is some e € f(E)
with dUe € A.

Proof. Suppose not. Choose e; € f(D) arbitrarily. There is some ey € f(D) with e; N
ea = 0 and e Uey & A. Also, there is some e3 € f(D) with (e; Ueg) Nes = 0 and
etUes & AjesUesz € AjegUesUes € A. Continuing in this manner, we obtain disjoint sets
ey, e9,¢€3,...s0 that if e € f({e1,e2,...,€e,}) then e, Ue & A. Writing €, = ey;_1 Uey; for
each 7, and setting D’ = {€, €}, ¢5, ...} C f(D), we see that D’ contradicts the assumption
that A is large for D. (Note that we don’t know that each e; € A, so we need to consider
the e} instead.) O

Lemma 6. Suppose that A is large for D. Then there is a set € € f(D), and a disjoint
collection D" C f(D), each of whose members is disjoint from €', such that

Aley={aeA:ane =0,aue € A}
is large for D'.
Proof. Let EC f(D) be as in Lemma 5 and let
Di={deD:dne=0forall e € E}.
Note that AN f(D,) is large for D;. For every e € f(F) set

Ac={ae AN f(Dy):aUee€ A}.
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By Lemma 5,
Anf(Dy)c | A

ecf(E)

In other words, we have partitioned the relevant part of A into finitely many (2/% — 1)
pieces. Repeated application of Lemma 3 yields a disjoint collection D' C f(D;), and a
fixed ¢’ € f(E), such that A, and therefore A(e’), is large for D'. O

A subtle refinement of Lemma 6 is just what we need to prove the theorem.

Lemma 7. Suppose that A is large for D. Then there is a set ¢ € AN f(D), and a
disjoint collection D" C f(D), each of whose members is disjoint from €”, such that

Al)y={aceA:ane" =0,aUe" € A}
is large for D",

Proof. By Lemma 6 we have e; € f(D) and D] C f(D), each of whose members is disjoint
from €/, such that

Ae))={aceA:ane; =0,aUe| € A}

is large for D}. We next find ey € f(D]) and D; C f(D}), each of whose members is
disjoint from €}, such that

Aley)) ={a € A(e)) :aney,=0,aUe, € A(e))}

is large for D). Continuing, we find, for each n > 1, e/, D! and A(e},) with

en € f(Dy,_1)

Dy, C f(Dy,_4)

de D, =dne, =0

Ale)={aecA(e,_y) :ane, =0,aUe], € A(e,_,)} large for DJ,.

The family {e},e},...} C f(D) is itself a disjoint collection, so there are i; < -+ < 4, with

e = U €i; € A.

1<j<r

Set D" = D; and we are done. O



Rather remarkably, we now just repeat the proof of Lemma 7 to obtain the full theorem.
For let F' be partitioned as F' = Fy U ---U F,. By Lemma 4, some F; is large for some
disjoint collection D. We proceed as in the proof of Lemma 7, first finding e/ € F; N f(D)
and DY C f(D), each of whose members is disjoint from €/, such that

Aley={ac F:ane]/=0,aU¢] € F}}

is large for Dy. Continuing, we find, for each n > 1, e/, D! and A(e) with

e ey € Aley )N f(Dy,_4)
e D C f(Dy_y)
edeD! =dne =0

o Alel)y={aecA(el_y):anel =0,aUel € A(el'_,)} large for D.

Our sought-after disjoint collection is just {e7, e, e}, .. .}.



