
Hindman’s Theorem

For real numbers x1, . . . , xn, we define FS(x1, . . . , xn) to be the set of (nonempty) finite
sums of the xi, so that

FS(x1, . . . , xn) =

{∑
i∈I

xi : ∅ 6= I ⊂ [n]

}
.

Hindman’s theorem states the following

Theorem 1. Any finite coloring of the natural numbers contains an infinite set A such
that FS(A) is monochromatic.

We will deduce this from an equivalent set theory version of the result. Let F be the set
of finite nonempty subsets of N. For ∅ 6= A ⊂ F , f(A) denotes the set of finite unions of
members of A, excluding the empty union. A set D ⊂ F is said to be a disjoint collection
if D is infinite and its members are disjoint.

Theorem 2. For any finite partition of F into sets F1, . . . , Fn, there exists an i and a
disjoint collection D ⊂ Fi such that f(D) ⊂ Fi.

Theorem 1 follows easily from Theorem 2 by identifying a set A ∈ F with the natural
number

∑
i∈A 2i−1. Specifically, a finite coloring of N yields a finite coloring of F , which,

by Theorem 2, yields a disjoint collection D such that f(D) is monochromatic. Sets in D
correspond to natural numbers, and finite unions of sets in D correspond to finite sums of
those numbers. (Note that a partition of F into sets F1, . . . , Fn is just an n-coloring of F .)

The following definition is the key to the entire proof. If A ⊂ F and D is a disjoint
collection, we say that A is large for D if, for every disjoint collection D′ ⊂ f(D), f(D′)∩
A 6= ∅. For example, viewing N as a disjoint collection of singletons, the set of even-sized
subsets of N is large for N, but the set of odd-sized subsets is not.

The next two lemmas show that a large set “almost” survives partitioning.
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Lemma 3. If A is large for D and A = A1 ∪ A2, there is a disjoint collection D′ ⊂ f(D)
such that either A1 or A2 is large for D′.

Proof. Suppose not. Since A1 is not large for D, there is a disjoint collection D′ ⊂ f(D)
such that f(D′) ∩ A1 = ∅. Since A2 is not large for D′, there is a disjoint collection
D′′ ⊂ f(D′) such that f(D′′) ∩ A2 = ∅. Therefore f(D′′) ∩ A = ∅, contradicting the
assumption that A is large for D.

Lemma 4. Suppose that F is partitioned into sets F1, . . . , Fn. Then there is some i and
a disjoint collection D such that Fi is large for D.

Proof. Inductively apply Lemma 3.

Suppose that A is large for D. The goal of the next three lemmas is to show that a certain
cleverly-chosen subset of A is still large for some disjoint collection D′ ⊂ f(D).

Lemma 5. Suppose that A is large for D. Then there is a finite set E ⊂ f(D), whose
members are disjoint, such that for all d ∈ f(D), if d ∩ (∪E) = ∅, there is some e ∈ f(E)
with d ∪ e ∈ A.

Proof. Suppose not. Choose e1 ∈ f(D) arbitrarily. There is some e2 ∈ f(D) with e1 ∩
e2 = ∅ and e1 ∪ e2 6∈ A. Also, there is some e3 ∈ f(D) with (e1 ∪ e2) ∩ e3 = ∅ and
e1∪e3 6∈ A, e2∪e3 6∈ A, e1∪e2∪e3 6∈ A. Continuing in this manner, we obtain disjoint sets
e1, e2, e3, . . . so that if e ∈ f({e1, e2, . . . , en}) then en+1 ∪ e 6∈ A. Writing e′i = e2i−1 ∪ e2i for
each i, and setting D′ = {e′1, e′2, e′3, . . .} ⊂ f(D), we see that D′ contradicts the assumption
that A is large for D. (Note that we don’t know that each ei 6∈ A, so we need to consider
the e′i instead.)

Lemma 6. Suppose that A is large for D. Then there is a set e′ ∈ f(D), and a disjoint
collection D′ ⊂ f(D), each of whose members is disjoint from e′, such that

A(e′) = {a ∈ A : a ∩ e′ = ∅, a ∪ e′ ∈ A}

is large for D′.

Proof. Let E ⊂ f(D) be as in Lemma 5 and let

D1 = {d ∈ D : d ∩ e = ∅ for all e ∈ E}.

Note that A ∩ f(D1) is large for D1. For every e ∈ f(E) set

Ae = {a ∈ A ∩ f(D1) : a ∪ e ∈ A}.
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By Lemma 5,
A ∩ f(D1) ⊂

⋃
e∈f(E)

Ae.

In other words, we have partitioned the relevant part of A into finitely many (2|E| − 1)
pieces. Repeated application of Lemma 3 yields a disjoint collection D′ ⊂ f(D1), and a
fixed e′ ∈ f(E), such that Ae′ , and therefore A(e′), is large for D′.

A subtle refinement of Lemma 6 is just what we need to prove the theorem.

Lemma 7. Suppose that A is large for D. Then there is a set e′′ ∈ A ∩ f(D), and a
disjoint collection D′′ ⊂ f(D), each of whose members is disjoint from e′′, such that

A(e′′) = {a ∈ A : a ∩ e′′ = ∅, a ∪ e′′ ∈ A}

is large for D′′.

Proof. By Lemma 6 we have e1 ∈ f(D) and D′1 ⊂ f(D), each of whose members is disjoint
from e′1, such that

A(e′1) = {a ∈ A : a ∩ e′1 = ∅, a ∪ e′1 ∈ A}

is large for D′1. We next find e2 ∈ f(D′1) and D′2 ⊂ f(D′1), each of whose members is
disjoint from e′2, such that

A(e′2) = {a ∈ A(e′1) : a ∩ e′2 = ∅, a ∪ e′2 ∈ A(e′1)}

is large for D′2. Continuing, we find, for each n ≥ 1, e′n, D
′
n and A(e′n) with

• e′n ∈ f(D′n−1)

• D′n ⊂ f(D′n−1)

• d ∈ D′n ⇒ d ∩ e′n = ∅

• A(e′n) = {a ∈ A(e′n−1) : a ∩ e′n = ∅, a ∪ e′n ∈ A(e′n−1)} large for D′n.

The family {e′1, e′2, . . .} ⊂ f(D) is itself a disjoint collection, so there are i1 < · · · < ir with

e′′ =
⋃

1≤j≤r

eij ∈ A.

Set D′′ = D′ir and we are done.
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Rather remarkably, we now just repeat the proof of Lemma 7 to obtain the full theorem.
For let F be partitioned as F = F1 ∪ · · · ∪ Fn. By Lemma 4, some Fi is large for some
disjoint collection D. We proceed as in the proof of Lemma 7, first finding e′′1 ∈ Fi ∩ f(D)
and D′′1 ⊂ f(D), each of whose members is disjoint from e′′1, such that

A(e′′1) = {a ∈ Fi : a ∩ e′′1 = ∅, a ∪ e′′1 ∈ Fi}

is large for D′′1 . Continuing, we find, for each n ≥ 1, e′′n, D
′′
n and A(e′′n) with

• e′′n ∈ A(e′′n−1) ∩ f(D′n−1)

• D′′n ⊂ f(D′′n−1)

• d ∈ D′′n ⇒ d ∩ e′′n = ∅

• A(e′′n) = {a ∈ A(e′′n−1) : a ∩ e′′n = ∅, a ∪ e′′n ∈ A(e′′n−1)} large for D′′n.

Our sought-after disjoint collection is just {e′′1, e′′2, e′′3, . . .}.
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