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Abstract

We analyze a mathematical model of a cognitive radio network introduced in
Yemini et al. (2016). Our analysis reveals several surprising features of the
model. We explain some of these features using ideas from percolation theory
and stochastic geometry.
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1. Introduction

Percolation on the standard disc graph (Gilbert’s disc model) has been a well-
studied topic since the seminal work of Gilbert (1961). It has applications in
wireless ad hoc or sensor networks (Haenggi, 2012), where it is assumed that the
network is composed of a single class of transceivers with a fixed transmission
radius. In an important emerging class of networks, the so-called cognitive
networks, however, there exist two classes of transceivers, where the so-called
secondary users are only allowed to be active if they are not too close to any
of the primary users (Lee and Haenggi, 2012). In these networks, the primary
users are allowed unrestricted access to their licensed radio spectrum, while the
secondary users are prohibited from causing harmful interference to the primary
users, i.e., they need to respect a guard zone around the primary users.

We focus on percolation in the network formed by the secondary users. As-
suming that primary and secondary users form independent Poisson point pro-
cesses, the subset of secondary users who are allowed to be active is a Poisson

hole process, since the guard zones around the primary users create holes in the
point process of active secondary users. This point process was introduced in
Lee and Haenggi (2012) and further studied in Yazdanshenasan et al. (2016).

The problem of joint percolation in both the primary and secondary net-
works was proposed and studied in Yemini et al. (2016). Our main contribution
in this paper is threefold. First, we introduce a re-parametrization of the prob-
lem, reducing the number of parameters from the five in (Yemini et al., 2016) to
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three. This enables us to summarize the behavior of the full model in a single
plot, from which one can easily read off information about the original model.
Second, we present simulation results on the critical radius for the existence
of a left-right crossing, which approximates the critical radius for percolation;
we also indicate the necessary steps towards a better approximation of the lat-
ter parameter. Finally, these simulation results, shown in Figure 1, suggest
several mathematical results on the dependence of the critical radius on the
other parameters of the model. We state these results, together with sketches
of some of their proofs, in the last main section. Rigorous proofs will appear in
a forthcoming paper.

2. Mathematical background

We will use several facts and methods from continuum percolation. Most of
these relate to the Gilbert graph, which was first defined and studied in Gilbert
(1961), and we include a brief description of that model here. We also provide
a short explanation of the methods that have been used to study the model,
some of which were used in (Yemini et al., 2016), and some of which we will use
ourselves. For more information, and rigorous proofs, the reader is encouraged
to consult the books by Meester and Roy (1996), Penrose (2003), Bollobás and
Riordan (2006), Haenggi (2012), and the survey article by Balister et al. (2009).

In Gilbert’s model, we start with a Poisson process P of intensity one in the
plane. These points form the vertices of an infinite graph Gr. The edges of Gr

are obtained by joining two points of P if they lie at (Euclidean) distance less
than r, where r is a fixed parameter.

The main quantity of interest for the Gilbert model is the critical radius for

percolation. To define this, imagine fixing P and slowly increasing r, starting
from r = 0. Initially, the graph Gr will consist of small components, whose
vertices happen to lie close together, and isolated vertices. (Here, we use stan-
dard graph-theoretic terminology, so that a component, by definition, means
a connected component.) As we increase r, these components will grow and
merge, and at some point an infinite component I, containing a positive frac-
tion θ(r) > 0 of all the vertices in Gr, will appear. When this happens, we say
that percolation occurs, or that the model Gr percolates. The fraction θ(r) of
vertices in I can also be interpreted as the probability that a fixed vertex of Gr

belongs to I, and, as r increases, θ(r) will naturally increase towards 1.
From a rigorous mathematical perspective, Kolmogorov’s 0-1 law on tail

events implies that, for any fixed value of r, the probability that Gr percolates
(and also θ(r) > 0) is either zero or one. In other words, if we consider sev-
eral different instances of P , and simultaneously increase r in each of them,
at the same rate, then percolation occurs at the same time in each instance.
Consequently, if we define rcrit as

rcrit = sup{r : θ(r) = 0},

then, for r < rcrit, Gr does not percolate (almost surely), and, for r > rcrit, Gr
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percolates (again, almost surely, i.e., with probability 1). As it happens, when
r = rcrit, Gr does not percolate; this was established in Alexander (1996).

Given this, the next step is to obtain good bounds on rcrit. Currently the
best known rigorous bounds, due to Hall (1985), are

0.833 < rcrit < 1.836.

These bounds are only slight improvements of Gilbert’s original bounds from
1961, and were obtained using refinements of Gilbert’s original methods. The
lower bounds were obtained using branching processes, while the upper bounds
come from comparison with a lattice percolation model, specifically, face perco-
lation on a hexagonal lattice. More recently, Balister et al. (2005) used depen-
dent percolation to show that, with confidence 99.99%,

1.1978 < rcrit < 1.1989.

(In detail, Balister et al. showed that, subject to a certain bound on a certain
multidimensional integral, the stated bounds on rcrit hold; the integral itself was
estimated using Monte Carlo methods, resulting in the stated confidence level.)

For more complicated models, such as the secrecy graph model (Sarkar and
Haenggi, 2013), and the model considered in Yemini et al. (2016), comparison
with (dependent or independent) lattice percolation remains the main tool for
bounding the various thresholds (indeed, it is used extensively in (Yemini et al.,
2016)). These comparisons work by superimposing an appropriately-sized lattice
on the plane, and declaring a face F of the lattice “open” if F contains a point of
P . If the lattice spacing has been chosen correctly, then face percolation in the
lattice implies percolation in the original model. Therefore, we can use classical
bounds for lattice percolation thresholds to deduce that percolation occurs in
the original model, for certain parameter values. The method can also be used
to show that, for certain other parameter values, percolation does not occur;
occasionally, one has to use dependent percolation to make the comparisons
work, and this usually results in very weak bounds. Recent innovations include
the rolling ball method of Balister and Bollobás (2016), and the high confidence

method introduced in Balister et al. (2005), referred to above. Both these
newer methods can also be adapted to other models; for instance they were
used in Sarkar and Haenggi (2013) to study the secrecy graph.

The Gilbert model is primarily a model of a random geometric graph. How-
ever, there is a related coverage process, which we will make heavy use of in this
paper. To define this coverage process Cr, known as the Gilbert disc model, we
start with a unit-intensity Poisson process P as before, but this time we place an
open disc B(p, r) of radius r around each point p ∈ P . The connection between
the Gilbert disc model and the Gilbert graph Gr is that graph-theoretic compo-
nents in Gr correspond exactly to topological components of Cr/2. If Cr/2 has an
infinite (topological) component, we extend our earlier terminology by saying
that Cr/2 percolates, which, by the above, occurs if and only if Gr percolates as
well.
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There are several quantities related to the Gilbert disc model which can be
conveniently expressed in terms of the connection radius r. First, there is the
average coverage level αr = πr2, which represents both the average number
of times a point of R

2 is covered by Cr and also the average degree in Gr.
Then there is the reduced coverage level α′

r = αr/2 = αr/4, representing the
average coverage level of the “reduced” Gilbert model Cr/2. Finally, there is the
covered area fraction βr, defined to be the proportion of R2 which is covered
by Cr, and which can also be interpreted as the probability that a fixed point
x ∈ R

2 is covered by Cr. Since x is not covered by Cr if and only if no p ∈ P
lies within distance r of x, which happens with probability e−πr2, we see that
βr = 1− e−πr2. (There is also the covered area fraction for the reduced model
βr/2, but we will not use this parameter in our analysis.) To summarize:

Reduced coverage level = α′
r =

1

4
πr2

Covered area fraction = βr = 1− e−πr2

The main facts we will use about Cr are the precise results from Balister
et al. (2010) on the distribution of the regions left uncovered by Cr when r is
large. Since these results are somewhat technical, we will postpone detailed
discussion of them until we need them (in Section 7).

3. The work of Yemini et al.

Yemini et al. (2016) consider the following five-parameter model of two in-
terlinked random geometric graphs, which they term the heterogeneous model.
In their model, there are two networks, a primary network, and a secondary

one. The primary network consists of primary nodes, distributed according to
a Poisson process P1 of intensity λp in the plane; two nodes x and y of the
primary network are connected if they lie at Euclidean distance at most (or,
equivalently, less than) Dt. The secondary network consists of secondary nodes,
distributed according to a Poisson process P2 of intensity λs in the plane, where
P1 and P2 are independent point processes. Two nodes u and v of the secondary
network are connected if they lie at Euclidean distance at most dt from each
other, and if also there is no primary node within distance Df of either u or
v. The parameters Dt and dt are the transmission ranges of the primary and
secondary networks respectively, while Df is the radius of the guard zone of the
primary nodes.

This is a complicated and very general model, so one should perhaps not
expect a complete analysis of every aspect of it. The first result in (Yemini
et al., 2016) concerns the region of the parameter space for which both networks
percolate, which the authors call the simultaneous connectivity region. The
result is that this region forms a connected subset of R5. After that, the authors
modify an argument from Meester and Roy (1996) (who had in turn modified
the classic “trifurcation” argument in Burton and Keane (1989)) to show that,
with probability one, there is at most one infinite component in the primary
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network, and at most one infinite component in the secondary network. Then,
they use a “Peierls” (circuit-counting) argument to show that, for all fixed Dt

and dt, and for λp and λs above the respective separate percolation thresholds,
there exists Df > 0 such that both networks percolate; intuitively this follows
by taking Df sufficiently small so that the primary network has a negligible
effect on the secondary one. Finally, they use comparison with site percolation
to derive necessary conditions and (much stronger) sufficient conditions for both
networks to percolate.

4. Re-parametrization

Our first remark is that, for percolation to occur in the primary network, it
is necessary and sufficient that

Dt > λp
−1/2rcrit. (1)

This condition, which appears in the form λp > D−2
t λc(1) in each theorem

of Sections 5 and 6 of Yemini et al. (2016), is separate from the rest of the
model. In other words, to check whether percolation occurs in the primary
network, we just check whether (1) is satisfied, and this just depends on Dt

and λp. Consequently, we can ignore the parameter Dt, as well as the issue
of percolation in the primary network. What is at stake is percolation in the
secondary network.

Second, there is no loss of generality in assuming that λp = 1. This is
because the model with parameters

(λp, λs, Dt, dt, Df ) (2)

can be re-scaled to have parameters

(1, λs/λp, Dt

√

λp, dt
√

λp, Df

√

λp). (3)

In detail, given the model with the parameters in (2), we can magnify the plane
R

2 by a linear factor of
√

λp in both directions. This has the effect of dividing
both intensities by λp and multiplying all distances (including the transmission
ranges and guard zone radii) by the factor

√

λp, yielding the parameters in (3).
This special case therefore captures all the essentials of the original model and
is the only case we need consider.

From now on, we will write λ = λs, d = dt and D = Df for the remaining
three parameters. The model can be described as follows. The primary nodes
land in the plane, and each primary node creates a “hole” of radius D around
itself. These holes cover a fraction

βD = 1− e−πD2

of the plane. Then the secondary nodes land. Although these have intensity
λ, only the ones landing outside the holes can transmit. Therefore, the average
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intensity of active secondary nodes, i.e., secondary nodes which can actually
transmit, is given by

λ′ = λ(1 − βD) = λe−πD2

.

The active secondary nodes do not form a Poisson process but a Poisson hole
process as introduced in Lee and Haenggi (2012). Our analysis will be in terms
of the parameter

αsec(d,D, λ) = λ′α′
d =

1

4
λπd2e−πD2

,

which represents the average coverage level when discs of radius d/2 are placed
around each active secondary node. (This corresponds to the reduced coverage
level introduced earlier, except that the underlying point process is no longer
Poisson.) Specifically, if dcrit is the critical radius for percolation in the model
(whose existence follows from Kolmogorov’s 0-1 law), then we write

αλ(β) = αcrit(D,λ) = αsec(dcrit, D, λ) =
1

4
λπd2crite

−πD2

=
1

4
λπd2crit(1− β).

Our goal will be to understand the dependence of α = αcrit(D,λ) on β = βD, for
different values of λ. In other words, we will essentially consider α as a function
αλ(β) of β. For fixed λ, the original formulation of the problem asked for dcrit as
a function of D. Our formulation is equivalent, since β can be calculated from
D using the equation β = 1− e−πD2

, and dcrit can be calculated from α, β and
λ using the equation displayed above. Thus, knowing the dependence of α on β
also indicates the dependence of dcrit on D, for a fixed value of λ. In addition,
our reformulation allows us to observe and explain some new phenomena.

First we present some simulation results, followed by some theorems sug-
gested by these results.

5. Simulation method

In the simulation, we focus on left-right (LR) crossings in a large square
region of the network. For given values of λ and β (or D), we adjust the
parameter α until there exists an LR crossing in between 45 and 55 out of 100
realizations of the model. This experiment is repeated 50 times, and the average
of the 50 resulting values of α is taken. Overall, this simulation procedure
provides a good trade-off between accuracy and simulation time.

For the initial guess for dcrit (and thus α), we use

dinit =
rcrit√
λ
eπD

2/2(1 + λD2/12).

Depending on the fraction of LR crossings found in 100 network realizations,
the initial guess for dcrit is adjusted up or down, until it falls in the 45-55%
range. The network is simulated on a square of side length 2s, where s =
max{24, 10dinit}.

This simulation process is relatively efficient for most of the parameter space
but gets time-consuming as λ → 0 and β → 1 (for D > 1.3). Although the
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existence of an LR crossing does not guarantee percolation, the resulting values
for α give some insight into the behavior of αλ(β) and also provide supporting
evidence for various conjectures on its shape. In principle, we can get arbitrarily
good approximations to the actual curves using the high-confidence method of
Balister et al. (2005), except that this would take a very long time, since the
method necessitates a laborious computational process for each value of λ and
β; in any case, we expect these results to strongly resemble those in Figure 1
below.

6. Results

The simulation results for λ = 1/8, 1/4, 1/2, 1, 2 and 4 are shown in Figure 1.
For each value of λ, the percolation region lies above the curve. Note that, when
D = 0, so that βD = 0, we recover the original Gilbert model, for which

αcrit := αλ(0) =
1

4
πr2crit ≈ 1.13.

Note also that when λ = 0 there is no secondary network, so that we cannot
meaningfully talk about a critical radius dcrit in this case.

Several features are immediately apparent from Figure 1. Here are some of
them.

Observation 1. For each λ, and every β ∈ [0, 1), αλ(β) ≥ αcrit.

Observation 2. For each fixed β, α = αλ(β) is monotonically increasing with
λ.

Observation 3. For each fixed λ, the curve α = αλ(β) is unimodal.
Also, as λ increases, the peak of αλ(β) rises and moves further to the right.

The next two observations relate to the asymptotic behavior of the model and
are, in fact, the only observations we can fully explain. The first (Observation
4) is relevant when the primary nodes are surrounded by large guard zones,
so that most secondary nodes are inactive, while the second (Observation 5) is
relevant when the intensity of secondary nodes is very low.

Observation 4. For each fixed λ, αλ(β) → αλ(0) = αcrit as β → 1.
(Note: it took several hours of computer time to confirm this.) Naturally, as
D → ∞ with λ and d fixed, the secondary model does not percolate. More
precisely, from the observation, for fixed λ, d2crit(1 − β) → c(λ) as β → 1
(equivalently, as D → ∞), where 1

4λπc(λ) = αcrit. Consequently, as β → 1 with
λ fixed, dcrit → ∞.

Observation 5. We have αλ(β) → αcrit uniformly as λ → 0.
Naturally, if λ → 0 with D and d fixed, the secondary model does not percolate.
More precisely, from the observation, for fixed β, λd2crit → c(β) as λ → 0, where
1
4πc(β)(1 − β) = αcrit. Consequently, as λ → 0 with β fixed, dcrit → ∞.

We can prove some, but not all, of these observations. In the next section, we
explain as many of them as we can.
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Figure 1: Critical average coverage levels αλ(β) for different values of λ.

7. Analysis

For Observations 1 and 2, we have only heuristic explanations. First, fix
β ∈ [0, 1) and λ > 0. The holes B(p,D) around each point p ∈ P1 of the
primary network constrain the locations of the active secondary nodes q ∈ P2 \
⋃

p∈P1
B(p,D), causing the discs B(q, d/2) to overlap more than in the basic

Gilbert model, without aiding percolation. This overlap, in turn, increases the
average coverage level required for percolation, explaining Observation 1. The
overlap effect will be more pronounced for large λ, explaining Observation 2.

An extreme illustration of this phenomenon is provided when −λ(log(1 −
β)−1) → c. (This case is considered in detail in Theorem 1 below.) In this
scenario, the active secondary nodes are clustered together in the tiny regions
left vacant by the primary node guard zones, with, on average, c active secondary
nodes per vacant region. The discs around the secondary nodes in each tiny
cluster will almost exactly coincide, so that the critical value of α increases
from αcrit by a factor of roughly, but not exactly, c. (The exact factor is given
in Theorem 1.)

When λ is very small, the locations of the active secondary nodes still form
an approximate Poisson process, regardless of the value of β, so that our model
approximates the basic Gilbert model (albeit scaled by a factor of λ−1/2). This
explains Observation 5.

For Observations 3 and 4, we need to describe the geometry of the union of
discs

⋃

p∈P1
B(p,D) in some detail, following the approach outlined in Section

2.3 of (Balister et al., 2009). (The technical details are contained in Section
4 of (Balister et al., 2010)). The idea is to consider the boundaries ∂B(p,D)
of the discs B(p,D), rather than the discs themselves. Consider a fixed disc
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boundary ∂B(p,D). This boundary intersects the boundaries ∂B(p′, D) of all
discs B(p′, D) whose centers p′ lie at distance less than 2D from p. There is an
expected number 4πD2 of such points p′ ∈ P1. Each such p′ contributes two
intersection points ∂B(p,D)∩∂B(p′, D), and each intersection is counted twice
(once from p and once from p′). Therefore we expect 4πD2 intersections of disc
boundaries per primary node, and, since the intensity of the primary nodes (in
our reformulation) is 1, we expect 4πD2 intersections of disc boundaries per unit
area over the entire plane. Note that these intersections do not form a Poisson
process, since they are constrained to lie on various circles.

The next step is to move from intersections to regions. The disc boundaries
partition the plane into small “atomic” regions. Drawing all the disc boundaries
in the plane yields an infinite plane graph, each of whose vertices (disc boundary
intersections) has four curvilinear edges emanating from it. Each such edge has
two vertices, so (by double counting) there are almost exactly twice as many
edges as vertices in any large region R. It follows from Euler’s formula for plane
graphs (Bollobás, 1998) that the number of atomic regions in R is asymptotically
the same as the number of intersection points in R. (Euler’s formula states that,
for a plane graph with V vertices, E edges and F faces (including the outer face),
we have V −E+F = 2. Thus, when V,E and F all tend to infinity, and V ∼ 2E,
we must have F ∼ V .)

An alternative argument is that each atomic region has a “leftmost” inter-
section point, and each intersection point is the leftmost point of exactly one
atomic region, so that there is a one-to-one correspondence between intersec-
tions and regions. Moreover, each vertex borders four atomic regions, so that
the average number of vertices bordering an atomic region is also four. Note
that this last figure is just an average, and that many atomic regions will have
less than, or more than, four vertices on their boundaries.

The third step is to return to the discs themselves and calculate the expected
number of uncovered atomic regions per unit area. It is most convenient to cal-
culate this in terms of uncovered intersection points. A fixed intersection point
is uncovered by

⋃

p∈P1
B(p,D) with probability e−πD2

(using the independence

of the Poisson process), so we expect 4πD2e−πD2

uncovered intersections, and

so πD2e−πD2

uncovered regions, per unit area in R. (It turns out that the aver-
age number of sides of an uncovered region is also four.) Consequently, for large
D, these uncovered regions are rare, and, moreover, their distribution in the
plane is approximately Poisson. This last assertion can be made precise, and
proved using the Chen-Stein method of Poisson approximation (see (Balister
et al., 2010) for details).

How large are these uncovered atomic regions? To answer this, recall that
the uncovered area fraction in R

2 is e−πD2

. Since the uncovered regions form an
approximate Poisson process of intensity πD2e−πD2

, the expected area of each
uncovered region is (πD2)−1 = (− log(1− β))−1. Again, this is just an average;
some uncovered regions will be much larger than this, and others will be much
smaller.

Having obtained the expected size ((− log(1 − β))−1) and the approximate
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spatial distribution (Poisson, with intensity −(1−β) log(1−β)) of the uncovered
regions when β is close to 1, we turn to more detailed results on the sizes of these
regions. It is known (Calka et al., 2010) that the scaled area distribution of the
uncovered regions in a high-intensity (i.e., β → 1) Boolean model converges in
law to the area distribution A of the typical cell of a Poisson line process. (The
Poisson line process Pl is somewhat analogous to the Poisson point process. It
is spatially homogeneous (stationary) and can be defined (Miles, 1964) using
a one-dimensional Poisson process X and, for each x ∈ X , a uniform random
variable Yx on [0, π) as follows: x ∈ X gives the (signed) distance from a line
l ∈ Pl to the origin, and Yx gives the orientation of l. All Yx are independent.)
The exact distribution of A is unknown, but, normalizing so that E(A) = 1, the
second moment E(A2) = 1

2π
2 and the third moment E(A3) = 4

7π
4 were both

obtained as early as 1945 by S.A. Goudsmit and D.G. Kendall respectively. Our
analysis will in be terms of the moment generating function MA(t) = E(etA) of
this normalized area A.

In the following theorem, we let β → 1 with λ = λ(β) depending on β. In
other words, we study the limit of αλ(β) as β → 1 along a specified curve in
the (β, λ) plane. In the proof, we use (almost) standard asymptotic notation,
so that f(x) ∼ g(x) as x → c means f(x)/g(x) → 1 as x → c.

Theorem 1. Suppose that β → 1 with λ(β) = −c log(1 − β), where c > 0 is a

fixed constant. Then

αλ(β)(β) →
cαcrit

1−MA(−c)
.

Proof. (Sketch) Suppose that the hypotheses of the theorem hold, and note
that the disc radius D (corresponding to the covered area fraction β) satisfies
πD2 = − log(1− β). Write U for the random variable representing the number
of active secondary nodes in an uncovered atomic region, and V for the random
variable representing the area of an uncovered atomic region. Then, by the tower
law of conditional expectation and basic properties of the Poisson process,

E(U) = E(E(U |V )) = E(λ(β)V ) = λ(β)E(V ) =
λ(β)

πD2
=

−λ(β)

log(1− β)
= c.

We are interested in the uncovered regions which contain at least one active
secondary node. The intensity Ia(β) of these “active” uncovered regions is the
intensity I(β) of the uncovered regions multiplied by the probability P(U 6= 0)
that the typical uncovered region contains at least one secondary node. This
latter probability can be obtained in terms of the moment-generating function
of A. Indeed, using the fact that − log(1 − β)V converges in law to A (defined
above), and writing fV and fA for the densities of V and A respectively, we
have

Ia(β) = I(β)P(U 6= 0) = I(β)

(

1−
∫ ∞

0

fV (t)e
−tλ(β) dt

)

∼ I(β)

(

1−
∫ ∞

0

fA(t)e
tλ(β)(log(1−β))−1

dt

)

= I(β)

(

1−
∫ ∞

0

fA(t)e
−ct dt

)

= I(β)(1 −MA(−c)) = −(1− β) log(1− β)(1 −MA(−c)).
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The active uncovered regions form an approximate Poisson process with in-
tensity Ia(β). Therefore, dcrit is asymptotically given by dcrit = Ia(β)−1/2rcrit ≈
1.2Ia(β)−1/2. If each active uncovered region had exactly one secondary node,
then αλ(β) would simply be αcrit ≈ 1.13 as before, since the secondary nodes
would essentially form a scaled version of the basic Boolean model. How-
ever, instead, we have an asymptotic expected number E(U)(1−MA(−c))−1 =
c(1 − MA(−c))−1 of secondary nodes in each active uncovered region; this is
the expected value of U conditioned on U 6= 0. This means that the average
“overlap” factor tends to c(1−MA(−c))−1, so that αλ(β)(β) → cαcrit

1−MA(−c) , as in

the statement of the theorem.

From this, Observation 4 follows easily. Writing c(β, λ) = −λ(log(1−β))−1,
we see that if λ is fixed then c → 0 as β → 1; since moreover 1 − MA(−c) =
c+O(c2), we have αλ(β) → αcrit in this case. Theorem 1 is also consistent with
Observation 3. It is less clear what happens close to the maximum of αλ(β) for
each fixed λ, so that most of Observation 3 remains unexplained. We hope to
return to this question in a future paper.

8. Conclusions and open problems

In this paper we have analyzed a mathematical model of a cognitive radio
network with two classes of user. This model, proposed in Yemini et al. (2016),
is related to the Poisson hole process introduced in Lee and Haenggi (2012).
We have simplified the original model, while retaining every one of its essential
features, and then studied the new model both computationally and analytically.

Our simulation results have revealed several surprising phenomena, some of
which are easier to explain than others. Rigorous proofs of Theorem 1 and
Observations 4 and 5 will appear in a forthcoming paper. For now, the main
open problems are to prove Observations 1, 2 and 3. We hope that our work
will stimulate further research on this problem.
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