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Large networks are everywhere.

Internet

Credit: Matt Britt
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Another example:

Brain

Credit: Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ,

Wedeen VJ, Sporns O
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And another:

Credit: Shakespeare, Adam Palay
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Phase transitions are also everywhere, especially in physics.

• Water boils at 100◦C .
• The Curie temperature of iron is 770◦C .
• An egg scrambles at 70◦C .

Why?

A phase transition (math: sharp threshold) often has a large
random network underneath it.
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Bond percolation in the square lattice
(Broadbent and Hammersley 1957)

Edges (bonds) included independently with probability p
Kesten (1980) pc = 1

2
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Face percolation in the hexagonal lattice

Kesten (1982) pc = 1
2

Schramm, Smirnov, Lawler/Schramm/Werner, Smirnov/Werner
(early 2000s)

β = 5
36 , γ = 43

18 , δ = 91
5 , η = 5

24 , ν = 4
3
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β and γ

O 1

θ(p)

χ(p)

1
2 p

C = connected cluster containing the origin

θ(p) = Pp(|C | =∞) = (p − pc)β+o(1) as p ↓ pc
χ(p) = Ep(|C |) = (p − pc)−γ+o(1) as p ↑ pc
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pc = 1
2

P1/2(R) = P1/2(B)

P1/2(R) + P1/2(B) = 1

P1/2(R) = P1/2(B) = 1
2
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Other models exhibiting phase transitions:

random graphs
branching processes
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Poisson processes - definition

• Tessellate R2 with unit squares

• In each square Si , independently, place Xi points uniformly at
random, where Xi ∼ Po(1), i.e.,

P(Xi = k) =
1

ek!

• This has many more nice properties than one might expect

[A Poisson process is a limit as N →∞ of the process obtained by
placing N points uniformly at random in a box of area N.]

Amites Sarkar Bootstrap Percolation in Random Geometric Graphs



Poisson processes - properties

P = Poisson process of intensity 1 in R2 .
...............

• Number of points X inside any region A is a random variable
with the Poisson distribution of mean |A|, so that

P(X = k) =
e−|A||A|k

k!

• Disjoint regions are independent

[A Poisson process is a limit as N →∞ of the process obtained by
placing N points uniformly at random in a box of area N.]
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Random geometric graphs (Gilbert 1961)

Vertices (nodes) are a Poisson process of intensity 1
Edges join vertices at distance less than r
Gilbert’s motivation: communications networks
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Percolation

Hall (1985) 0.833 < rperc < 1.836
Balister, Bollobás and Walters (2005) 1.1978 < rperc < 1.1989
- semi-rigorous, high confidence result
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Connectivity

Penrose (1997) πr2conn(n) = log n
Obstruction to connectivity: isolated vertices
At the threshold, E(isolated vertices) = 1
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Disclaimers

Instead of using a square, we put the points in a torus, to avoid
boundary effects.

Connectivity is only guaranteed with high probability, i.e., with
probability tending to 1 as n→∞.

The same applies to (almost) every other definitive-sounding
statement I’ll make.
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The Bradonjić-Saniee model (2014)

Start with the Gilbert model, above the connectivity threshold

πr2 = a log n with a > 1

Initially infect vertices independently with probability p: this is A0

Each vertex expects
a log n neighbors
ap log n infected neighbors

At := set of infected vertices at time t
In each discrete time step (t = 1, 2, . . .)

For each v /∈ At (i.e. each uninfected v)
If v has at least aθ log n infected neighbors
• v becomes infected (and stays infected forever)

Repeat for each vertex v to get At+1

Repeat for each t to get A∞

What proportion |A∞|/n of the graph eventually becomes infected?
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Theorem (Bradonjić and Saniee 2014)

For x > 0, define
J(x) = log x − 1− 1/x

and write J−1R for the inverse of J on [1,∞]. Then if

p < p′ = θ/J−1r (1/aθ)

then no initially uninfected vertex becomes infected.

Theorem (Bradonjić and Saniee 2014)

If

p > p′′ = min

{
θ,

5πθ

J−1r (1/aθ)

}
then every initially uninfected vertex becomes infected.
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Theorem (Falgas-Ravry and S 2022+)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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Basic orientation - the threshold θ = p

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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Basic orientation - the threshold θ = p

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

If θ < p, almost everything becomes infected immediately.

If θ > p, almost no new infections occur initially.

But this turns out to be completely irrelevant.
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The starting threshold θ = θstart(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The starting threshold θ = θstart(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

Sometimes, even when the threshold θ is much greater than p,
some uninfected vertices will see aθ log n infected neighbors,
despite only expecting to see only ap log n.
This will happen when

fstart(a, p, θ) = a(p − θ + θ log(θ/p)) < 1.

In this case, the infection will start to spread, and grow to at least
logarithmic size.
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The simple stopping threshold θ = θstop

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The simple stopping threshold θ = θstop

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

On the other hand, some initially uninfected vertices will not even
have aθ log n neighbors, despite only expecting to see a log n.
These vertices can never become infected.

This will happen when

fstop(a, θ) = a(1− θ + θ log θ) < 1.

This yields a simple necessary condition for full percolation.
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The growing threshold θ = 1+p
2

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The growing threshold θ = 1+p
2

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

Fully infected Infection rate = p

1 p

When infections have broken the logarithmic barrier, they will grow
as long as

θ <
1 + p

2

But they need to clear a lot of local hurdles first.
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The threshold for full percolation θ = θislands(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The threshold for full percolation θ = θislands(p)

f →

g →
A B

e−λ

1 1

e−λh e−λh

e−λh

1

1
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The threshold for full percolation θ = θislands(p)

f →

g →
A B

e−λ

1 1

e−λh e−λh

e−λh

1

1

At the other end, there are small obstructions to full percolation,
of radius τ r . These can be optimized (for fixed τ) using Lagrange
multipliers, and the Euler-Lagrange equations

d

dx

∂F

∂y ′
=
∂F

∂y

We then optimize over τ , to find the most likely obstruction.
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The local growth threshold θ = θlocal(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The local growth threshold θ = θlocal(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

1 θ p

To break the logarithmic barrier, infections need to do more than
just start.

They need to be able to expand beyond each radius τ r .

This yields a Lagrange multiplier problem with infinitely many
conditions.
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What did we actually prove?

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

The local growth threshold is only a sufficient condition for local
growth, and the islands threshold is only a necessary condition for
full percolation.

Accordingly, these thresholds only provide a lower bound for local
growth and an upper bound for full percolation.
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What did we actually prove?

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

We did prove that the growing condition is the true threshold for
local infections becoming global.

Some tools in the proof:

tessellation arguments (fine and rough tilings)
discrete isoperimetric inequalities
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It’s more complicated in one dimension

Polynomial growth

Polynomial obstructions

Logarithmic obstructions

No growth Logarithmic growth

Full percolation
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Come to Bellingham in April!
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Thank you for your attention!
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