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Large networks are everywhere.

Internet

Credit: Matt Britt
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Another example:

VA
K

/£ {cA
DR

Brain

Credit: Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ,
Wedeen VJ, Sporns O

Amites Sarkar Bootstrap colation in Ran Geometric Graphs




And another:
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Phase transitions are also everywhere, especially in physics.

e Water boils at 100°C.
e The Curie temperature of iron is 770°C.
e An egg scrambles at 70°C.

Why?

A phase transition (math: sharp threshold) often has a large
random network underneath it.
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Bond percolation in the square lattice
(Broadbent and Hammersley 1957)

Edges (bonds) included independently with probability p
Kesten (1980) p. = %
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Face percolation in the hexagonal lattice

Kesten (1982) p. = 2
Schramm, Smirnov, Lawler/Schramm/Werner, Smirnov/Werner
(early 2000s)
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B and ~

C = connected cluster containing the origin
0(p) = Po(|C| = o0) = (p — pc)**°M as p | pc
X(p) = Ep(ICl) = (p— pc) oM as p 1 pe
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Other models exhibiting phase transitions:

random graphs
branching processes
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Poisson processes - definition
e Tessellate R? with unit squares

e In each square S;, independently, place X; points uniformly at
random, where X; ~ Po(1), i.e.,

e This has many more nice properties than one might expect

[A Poisson process is a limit as N — oo of the process obtained by
placing N points uniformly at random in a box of area N.]
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Poisson processes - properties . . °

P = Poisson process of intensity 1 in R? g
.08

e Number of points X inside any region A is a random varlable

with the Poisson distribution of mean |A|, so that

eflA\,A,k

B(X = k) = =

e Disjoint regions are independent

[A Poisson process is a limit as N — oo of the process obtained by
placing N points uniformly at random in a box of area N.]
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Random geometric graphs (Gilbert 1961)
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Vertices (nodes) are a Poisson process of intensity 1
Edges join vertices at distance less than r
Gilbert's motivation: communications networks
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Percolation

Hall (1985) 0.833 < rpere < 1.836
Balister, Bollobas and Walters (2005) 1.1978 < rpere < 1.1989
- semi-rigorous, high confidence result
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Connectivity

Penrose (1997) 7r2,,,.(n) = log n
Obstruction to connectivity: isolated vertices
At the threshold, E(isolated vertices) = 1
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Disclaimers

Instead of using a square, we put the points in a torus, to avoid
boundary effects.

Connectivity is only guaranteed with high probability, i.e., with
probability tending to 1 as n — oc.

The same applies to (almost) every other definitive-sounding
statement I'll make.

Amites Sarkar Bootstrap Percolation in Random Geometric Graphs



The Bradonji¢-Saniee model (2014)
Start with the Gilbert model, above the connectivity threshold

7Tf2

= alogn with a > 1
Initially infect vertices independently with probability p: this is Ag
Each vertex expects

alog n neighbors

ap log n infected neighbors

A; := set of infected vertices at time t
In each discrete time step (t =1,2,...)
For each v ¢ A; (i.e. each uninfected v)
If v has at least afl log n infected neighbors
e v becomes infected (and stays infected forever)
Repeat for each vertex v to get A;11
Repeat for each t to get A

What proportion |Ax|/n of the graph eventually becomes infected?



Theorem (Bradonji¢ and Saniee 2014)
For x > 0, define

J(x) =logx—1—-1/x

and write J5 ! for the inverse of J on [1,00]. Then if
p<p =0/J7"(1/a0)

then no initially uninfected vertex becomes infected.

Theorem (Bradonji¢ and Saniee 2014)

J7H(1/a0)

then every initially uninfected vertex becomes infected.
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Theorem (Falgas-Ravry and S 2022+)

No percolation
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Basic orientation - the threshold 0 = p
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Basic orientation - the threshold 0 = p

1

o perclation 0

If & < p, almost everything becomes infected immediately.
If & > p, almost no new infections occur initially.

But this turns out to be completely irrelevant.
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The starting threshold 6 = O, (p)
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The starting threshold 6 = O, (p)

1

Sometimes, even when the threshold 6 is much greater than p,
some uninfected vertices will see afl log n infected neighbors,
despite only expecting to see only aplog n.

This will happen when

fitart(a, p,0) = a(p — 0 4 Olog(0/p)) < 1.

In this case, the infection will start to spread, and grow to at least
logarithmic size.
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The simple stopping threshold 0 = 0,
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The simple stopping threshold 0 = 0,

On the other hand, some initially uninfected vertices will not even
have afl log n neighbors, despite only expecting to see alog n.
These vertices can never become infected.

This will happen when

fstop(a,0) = a(1 — 0+ Ologh) < 1.

This yields a simple necessary condition for full percolation.
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. 1+
The growing threshold 0 = =52

1
0 = Ostant
: _
0= 2
No percolation 0 = Bocal
Almost no percolation
Almost percolation
0 = Oistands
Full percolation

0

p

Almost no percolation

No percolation
Almost no percolation

No percolation

Bootstrap Percolation in R

lom Geometric Graphs



. 14
The growing threshold 0 = =52

1

Fully infected Infection rate = p

When infections have broken the logarithmic barrier, they will grow
as long as

1+p

9<2

But they need to clear a lot of local hurdles first.
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The threshold for full percolation 6 = 0;g.n45(p)
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The threshold for full percolation 6 = ;g.,45(p)
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The threshold for full percolation 6 = 0;g1.n4s(p)

O 3

At the other end, there are small obstructions to full percolation,
of radius 7r. These can be optimized (for fixed 7) using Lagrange
multipliers, and the Euler-Lagrange equations

doF _oF
dx dy’ Oy

We then optimize over 7, to find the most likely obstruction.
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The local growth threshold 6 = 6),.,1(p)
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The local growth threshold 6 = 6),.,1(p)

To break the logarithmic barrier, infections need to do more than

just start.

They need to be able to expand beyond each radius 7r.

This yields a Lagrange multiplier problem with infinitely many

conditions.

Amites Sarkar
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What did we actually prove?

1

(=

0= Oitaas

The local growth threshold is only a sufficient condition for local
growth, and the islands threshold is only a necessary condition for
full percolation.

Accordingly, these thresholds only provide a lower bound for local
growth and an upper bound for full percolation.
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What did we actually prove?

1

0= Biians

Pull percolation

We did prove that the growing condition is the true threshold for
local infections becoming global.

Some tools in the proof:

tessellation arguments (fine and rough tilings)
discrete isoperimetric inequalities
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It’s more complicated in one dimension
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Come to Bellingham in April!
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Thank you for your attention!
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