Reliable Density Estimates for Coverage and Connectivity
in Thin Strips of Finite Length

Paul Balistert  Béla Bollobast

1 Dept. of Mathematical Sciences

University of Memphis
Memphis, TN 38152, USA

{pbalistr,bollobas}@memphis.edu, amites.sarkar@gmail.com

ABSTRACT

Deriving the critical density (which is equivalent to deriving
the critical radius or power) to achieve coverage and/or con-
nectivity for random deployments is a fundamental problem
in the area of wireless networks. The probabilistic condi-
tions normally derived, however, have limited appeal among
practitioners because they are often asymptotic, i.e., they
only make high probability guarantees in the limit of large
system sizes. Such conditions are not very useful in practice
since deployment regions are always finite. Another major
limitation of most existing work on coverage and connec-
tivity is their focus on thick deployment regions (such as a
square or a disk). There is no existing work (including tra-
ditional percolation theory) that derives critical densities for
thin strips (or annuli).

In this paper, we address both of these shortcomings by
introducing new techniques for deriving reliable density es-
timates for finite regions (including thin strips). We apply
our techniques to solve the open problem of deriving reliable
density estimates for achieving barrier coverage and connec-
tivity in thin strips, where sensors are deployed as a barrier
to detect moving objects and phenomena. We use simula-
tions to show that our estimates are accurate even for small
deployment regions. Our techniques bridge the gap between
theory and practice in the area of coverage and connectivity,
since the results can now be readily used in real-life deploy-
ments.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network topology, wireless com-
munication; G.3 [Mathematics of Computing]: Proba-
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1. INTRODUCTION

Deploying sensors deterministically is an expensive under-
taking in terms of time, effort, and money. As the cost of
wireless sensors continues to fall, the expense of determin-
istic deployment may become prohibitive (when compared
with the cost of sensors), making random deployment a com-
pelling alternative. When deploying sensors in inaccessible
terrain (e.g., forests, mountains, enemy regions), determin-
istic deployment may not even be an option. Even when
sensors have been deployed deterministically, significant er-
rors in deployment, movement of sensors after deployment
due to wind, unanticipated failure of sensors, or probabilis-
tic activation of sensors, may all make the distribution of
sensor locations close to a Poisson process as shown in [15].
For these and other reasons, the Poisson process is used in
the majority of analytical work on coverage and connectivity
in both wireless ad hoc and sensor networks [2, 7, 8, 9, 12,
13, 14, 15, 17, 18, 19, 21, 23, 24, 26]. Random deployment
is also the model of choice in simulations when studying the
performance of topology control and other algorithms [6, 16,
22, 25].

Deriving the critical density (which is equivalent to deriv-
ing the critical power or radius) needed to achieve coverage
and/or connectivity is a fundamental problem. It can be
used to predict the behavior of a network with regard to
coverage and/or connectivity. At a density lower than criti-
cal, with high probability, the network does not provide cov-
erage (and/or connectivity), and, at a density higher than
critical, with high probability, the network does provide cov-
erage; hence, the term critical. Such conditions, however,
are asymptotic in nature.  Since deployment regions are
always finite in real life, such conditions are not too useful
in practice.

Another major limitation of most existing work is that
they limit themselves to thick deployment regions such as
disks and squares. These results are not applicable to thin
strips. The fact that percolation does not occur for thin
regions is often cited as a primary reason for avoiding thin
strips [8]. The results that do consider rectangles place a
lower bound on the width to length ratio [19]. When sensors
are deployed in thin strips, such as when deploying along in-
ternational borders to detect intrusion, or around forests to



detect fire, no existing work can be used to derive the density
of sensors needed for achieving coverage and/or connectivity.

If the goal of deploying sensors is to detect moving ob-
jects and phenomena (which is often the case in thin strip
deployments), then the model of barrier coverage [14] may
be a more appropriate model than full coverage, which is
the focus of all existing work except [14]. Barrier cover-
age ensures that no moving object or phenomenon can cross
the barrier of sensors without being detected, whereas full-
coverage ensures that every point in the deployment region
is covered. Further, when sensors are deployed for barrier
coverage, achieving s-t connectivity, which ensures that a
connected path exists between the two far ends of a thin
strip, may be more appropriate than achieving full connec-
tivity, which requires that every sensor be connected to every
other sensor. The fact that some sensors may not be con-
nected to the base station does not compromise the barrier
coverage guarantee; all events can still be detected and com-
municated to the base station(s) even if the base station(s)
is located at a far end.

The problems of deriving densities needed for achieving
barrier coverage and/or s-t connectivity in thin strips (even
asymptotic conditions) are open [14]. In addition, no exist-
ing work can be used to provide reliable density estimates
for achieving full coverage and full connectivity in thin strips
even though these models have been extensively studied for
thick regions.

In this paper, we derive reliable estimates for the density
needed to achieve coverage and connectivity in thin strips for
all four models of coverage and connectivity. We develop a
novel definition of break (a disruption in connectivity) that
is critical in solving the problems of barrier coverage, s-t
connectivity, and full connectivity in thin strips, all three of
which are harder than full coverage. We use of the concept
of covering boundary intersection points [11] in deriving a
density estimate for full coverage. Our derivation is much
simpler, yet far more accurate than any existing work.

As far as is possible, we avoid taking limits (which is per-
vasive in existing work) in all our derivations to come up
with reliable estimates. We demonstrate the accuracy of
our estimates for finite regions through extensive simula-
tions. We intentionally use small regions in our simulations
to show that, unlike existing work, the system size does not
need to be large for our estimates to be accurate. Conse-
quently, our estimates can be readily used in real-life deploy-
ments (including small regions such as perimeters of secure
facilities) for determining the density of sensors needed, thus
bridging the long-standing gap between theory and practice
in the area of coverage and connectivity.

Organization: Section 2 describes the model and problem
formulations. Section 3 presents our key results, main con-
tributions, and some more related work. Section 4 presents
our novel definition of breaks which makes it possible to de-
rive reliable density estimates for coverage and connectivity
in thin strips. We also establish in this section that break oc-
currence approximately follows a Poisson distribution. Sec-
tion 5 describes heuristics that can be used to guess the den-
sity estimates. Section 6 presents the derivation of the break
intensity expected in a thin strip. Once the break intensity
is known, the density needed to achieve barrier coverage (or
s-t connectivity) with a desired probability can be readily
derived using the properties of the Poisson process. Simu-
lation results, which show the reliability of our estimates,

appear in Section 7. Sections 8 and 9 present derivations of
reliable density estimates for full connectivity and full cov-
erage. Section 10 concludes the paper and mentions some
future work. Due to space limitations, we do not include full
proofs of our results here. For more detailed proofs see [1].

2. MODEL AND PROBLEM DEFINITIONS

Consider an infinite strip S, = R x [0, k] of width (or
height) h. We place sensors inside this strip randomly ac-
cording to a Poisson process P of intensity A > 0. Thus for
any region A C R2, the number of sensors in A is given by
a Poisson variable of mean A|A N Sy|, where |A N Si| is the
area of the region AN Sy. Moreover, the number of sensors
in A is independent of the number of sensors in any disjoint
region. We shall assume that each sensor has the ability to
detect intruders within a certain distance rs, and transmit
information to other sensors within a (possibly unrelated)
distance 7. We note that for a given sampling frequency of
sensors, and a given startup latency, a sensing range exists
such that all events of interest within this sensing region are
detected by this sensor with very high probability.

Construct an infinite random geometric graph G, »,x with
vertex set given by the set of sensors P, by joining every sen-
sor to every other sensor that is strictly within (Euclidean)
distance r € {2rs,r:}. For a < b, define G}, » A(a, b) to be the
subgraph of G, »x consisting of sensors with z-coordinate
between a — £ and b+ %, and with two extra sensors s and ¢,
where s is joined to all sensors of P within distance 5 of the
line z = a and t is joined to all sensors of P within distance
5 of the line = b (see Figure 1). Such a graph is called a
Coverage Graph in [14]. We use Gh 1 (a,b) to address two
problems.

The first is barrier coverage [14]. We wish to detect mov-
ing objects or phenomena (such as intruders) crossing the
strip, so we wish to know if there is a path contained within
the region [a,b] x [0, ] from the top to the bottom of the
strip which does not pass within a distance of 5 = 5 of any
sensor. We call such a path a separating path. It is clear that
if such a path exists, then this path disconnects the graph
Gh,r2(a,b), since no point to the left of the path is within
distance r of a point to the right of the path. The converse
however is not true. There may be many small components
of Gp,rx(a,b) which do not result in such a path. However,
if no separating path exists in [a, b] X [0, k], then we have s-t
connectivity in G (a,b), i.e., there is a path from s to ¢
in the graph Gp,r x(a,b) (see Figure 1).

The second problem is to determine whether the sensors
that provide barrier coverage can relay information along
the strip. Suppose that every sensor within % of the line
r = a, say, can relay information to a base station. Then
it is enough that Gp ra(a,b) is s-t connected where r =
min{%,7:}. Indeed, the sensors along any s-t path in the
graph G, x(a, b) give barrier coverage, and one can relay in-
formation along this path. On the other hand, if Gp . (a, b)
is not s-t connected, then either r = % and there is no bar-
rier coverage, or r = 7r¢, and there is no communication
path from s to t using any of the sensors. Note that even if
Gh,r2(a,b) is s-t connected, there may be many small com-
ponents of the network that cannot communicate far along
the strip (see Figure 1 and Figure 2), however, for the pur-
poses of detecting movements, these small components are
not important, since removing these sensors would not allow
any moving object (or phenomena) to cross undetected.



If, on the other hand, each point in R = [a,b] x [0, h] is
covered by at least one sensor, then the region R is said to
be fully covered, and if the vertices of Gp,r,,» that lie in R
form a single connected component, then the network in R
is said to be fully connected.

Although it is sufficient to ensure barrier coverage and
s-t connectivity when the goal of sensor deployment is to
detect movements, other applications (such as fine-grained
tracking) may need full coverage and/or full connectivity,
which are stronger guarantees than barrier coverage and s-t
connectivity. We, therefore, derive reliable density estimates
for all four models of coverage and connectivity.

1
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Figure 1: Model with sensor range 5 (sensing re-
gions indicated by shading) or transmission range r
(indicated by graph edges). Dotted line indicates a
separating path — either a possible path of an un-
detected intruder, or a path disconnecting s from ¢

in the network.

3. SUMMARY OF OUR CONTRIBUTIONS
3.1 Key Results

In this section, we briefly summarize our key results.

First, we derive a closed form approximation for the break
intensity expected in a strip deployment region (see Theo-
rem 9, as well as (12) and (11)). Break intensity, which
we define formally in Section 4, informally denotes how fre-
quently we expect to encounter a loss in s-t connectivity as
we traverse the length of the strip. We show that the breaks
occur with an approximately Poisson distribution. Thus de-
noting the break intensity by In . x,

P(Gh (0, ) is not s-t connected)
~1-— exp(fflh,,«)\) ~ Uh,M,

provided £1j - » < 1. As we show in Section 2, the problems
of barrier coverage and s-t connectivity are equivalent to de-
termining whether Gp, 2 (0,¢) is s-t connected. Hence, this
relation holds for both barrier coverage and s-t connectivity.

Second, we derive a closed form approximation for the
probability that the network is not fully connected (see (13)
and (14)) in a thin strip. Finally, we derive a closed form ap-

proximation for full coverage in thin strips (see (15) and (17)).

We show in simulations that all of our estimates are almost
identical to those observed in experiments even for small
strips.

Comparing the estimates for the three models (since bar-
rier coverage is equivalent to s-t connectivity), we find that
for a long thin strip (¢ > h,r and Ar® > 1), the probability
of failure of barrier coverage is about the same as for full
connectivity when h < 7, but much less than for full con-
nectivity when h > Zr. Moreover, the probability of failure
of full coverage is always much larger than for barrier cov-
erage, or full connectivity (compare Figure 13 to Figures 9
and 11 for similar values of X).

3.2 Our Contributions and Related Work

Our main contributions in this paper are as follows.

First, ours is the first work to derive reliable density es-
timates for achieving barrier coverage and s-t connectivity
in thin strips. This had been an open problem. We also
settle the conjecture made in [14] in the negative, i.e., the
conditions for weak barrier coverage derived in [14] are not
enough to guarantee barrier coverage. See the lowermost
dotted curve in Figure 9, which represents the probability
of weak barrier coverage. The top curves in this figure rep-
resent the actual probability of barrier coverage and our es-
timates (which are almost indistinguishable).

Second, ours is also the first work to derive reliable den-
sity estimates for full connectivity in thin strips. As we
discuss in more detail in Section 8, previous techniques [18]
cannot be used in thin strips. This is because in thick re-
gions, the probability that a small component exists is much
larger than the probability that two or more large compo-
nents exist, and hence the latter event is ignored. For thin
strips, both events are significant and hence both must be
estimated. Again, it is our novel definition of breaks that
enables us to estimate the probability of the existence of two
or more larger components.

Finally, ours is also the first work to derive reliable esti-
mate for achieving full coverage in a thin strip region. As
we show in Section 9, the effect of the boundary dominates
in not only thin strip regions but also in thick deployment
regions such as disks or squares. Although this behavior
has been observed earlier for the square region in [23], no
work on full coverage currently exists for thin strips. Fur-
ther, our estimates are much more accurate since they are
not asymptotic, unlike most existing work.

In summary, our work makes it possible, for the first time,
to derive reliable density estimates for achieving coverage
and connectivity in thin strips.

4. BREAKS

In this section, we define breaks, which is central to solv-
ing the coverage and connectivity problems in thin strips.
We model s-t connectivity in Gj,x(a,b) by first consider-
ing the infinite graph G . Since there almost surely are
separating paths somewhere along the infinite strip, our an-
swers are in the form of estimating the frequency In - of
these “breaks”. In other words, if b — a is large (as com-
pared with 7 or h), then the expected number of breaks in
Gh,rr(a,b) is about (b—a)lj, »x (with possibly a small O(1)
error due to end effects near z = a and x = b). In practical
applications, we are interested in the probability of a break
occurring, or in the probability distribution of the number
of breaks. We define the notion of a break below so as to
make breaks “almost independent”. This will imply that the
number of breaks in G, x(a, b) is given approximately by a
Poisson variable of mean (b —a)In r x, and in particular, the
probability that no break occurs is about exp(—(b—a)In,r ).

The definition of a break is more tricky than it might
appear at first. For example, in Figure 2, should the two
separating paths be considered as defining the same break,
or two different breaks? Since there may be several small
connected “islands” in the break, one may be able to con-
struct very many separating paths; indeed, infinitely many
topologically distinct paths if we do not mind paths crossing
themselves. These two paths are also not really independent



since the existence of one makes the existence of the other
much more likely. If we were to count the paths in Fig-
ure 2 as distinct breaks, then the probability distribution of
the number of breaks in G, x(a,b) would be very far from
Poisson, and the probability of a break would be much less
than the expected number of breaks even when the expected
number of breaks is much less than 1. For this reason, we
wish to consider the situation in Figure 2 as a single break.

)

Figure 2: Ambiguity in counting breaks. Do the
two paths indicate two separate breaks, or should we
consider this as just one “compound” break? Also,
there are several small components of GG, - » that do
not cause any breaks.

There are several suitable definitions of a break, which al-
though different, give the same asymptotic frequencies when
h and r are large. The following definition is easy to com-
pute in simulations and is fairly convenient theoretically.

Define a good component to be a (graph) component C
of the graph Gp - which contains a sensor strictly within

V3

distance 5*r of the top of Sk, and also contains a sensor

strictly within distance ?r of the bottom of S},.

Let te (resp. b)) be the positions of the sensors in C' clos-
est to the top (resp. bottom) boundary of Sh, and let tc
(resp. bc) be the corresponding closest point on the bound-
ary. Thus C is good if and only if the line segments tcte and
bobe are both less than ?r in length. We can order the
good components from left to right according to the order of
the points t¢ along the top boundary of Sj. The definition
of a good component ensures that this agrees with the order-
ing given by the points bc along the bottom boundary of Sj,

since no good component can “jump” over or under another

— this is the significance of the @r margin. To see this,

define for each good component C, a path 42 across Sj, from
tc to be consisting of line segments. The first line segment
joins tc to ty, then there are line segments corresponding
to a (graph theoretic) path through C to by, and finally a
line segment to bc (see Figure 3). If the ordering of the
points tc was not consistent with the ordering of the points
bc, then there would be paths wgvl and 7%2 corresponding
to two good components, C7 and Cs, that cross. Either an
edge of one component would cross an edge of the other, or
an edge of one component would cross one of the segments
tote or bebe of the other. It is a simple geometric exercise
to show that in both cases, one of the points of C'y would be
within distance r of one of the points of C2, contradicting
the assumption that C; and Cs are distinct components of
the graph G r .

Define a break to be the gap between two consecutive good
components. In other words, a break is a partition of the set
of good components into two classes, those on the left of the
break, and those on the right, which is compatible with the
left-right ordering of the good components. The following
simple topological result indicates that our definition of a
break is reasonable.

LEMMA 1. Any separating path y partitions the good com-
ponents into those that lie to the left of v and those that lie
to the right of v, so in particular defines a break. Con-
versely, for any break there exists such a separating path -y.
Indeed, if the break occurs between good components C1 and
Cy then we can choose v to lie between the paths 7%1 and
782 defined above.

PRrOOF. It is clear that any separating path disconnects
Gh,r x, and so defines a break. For the converse, suppose C'
is a good component. The region S consisting of v& and all
the sensing regions of sensors in C' forms a connected subset
of the plane. No sensor outside of C' is within distance 3 of
72 or of the sensing range of any sensor in C. Thus no sensor
outside of C is within g of S. Since S intersects both the top
and bottom boundaries of Sy, the external boundary path of
S crosses Sy both on the left and on the right of S. Taking
a minimal subpath of this boundary that crosses Sj on the
right of S gives a suitable separating path corresponding to
the break just to the right of C. []

Note that translational invariance and long range indepen-
dence of the model Gp,,-,» imply that horizontal translation
is an ergodic transformation on the probability space of this
model. Thus breaks (or any other event that can be defined
in a translational invariant manner) occur almost surely with
a well defined frequency along the strip. Write I, » x for the
frequency (or intensity) of breaks in Gp,r,x.

We shall now make more precise our claim above about
the independence of breaks. For this we first need to make
some assumptions about A, r, and h. Firstly, we note that
by scaling all distances by a factor of v/X the graph Gh,r
(resp. Gh,r,a(a,b)) can be identified with G, 5 .5, (resp.

Gh\f/\’r\f/\’l(aﬁ, bv/\)). In Sections 4 through 7, we shall
therefore make the simplifying assumption that A = 1 and
drop A from the notation, for example, writing G}, and I,
instead of G, -1 and Iy, 1. We note here for future reference
that

Ih = ﬁlhﬂ,rﬁ' (1)

Next we note that if  is too small then G, has very few
large components. In this case, good components are rare,
but it is easy to find separating paths. Thus for small r, our
definition of a break is not very informative. There are few
breaks, but the breaks are “wide”, so most of the strip lies in
some break. Indeed, if r is small then even if we deployed the
sensors in the whole plane, the components would typically
be small. However, if r is above the critical threshold for
the Gilbert model [10] (numerically about 1.1984, [20, 3]),
sensors deployed in the whole plane would give rise to an
infinite connected component. In this case, provided h is
large, most of S, would be in (or surrounded by) the sensing
regions of good components. For our theoretical results, we
generally need r to be at least 6, but numerically r only
needs to be slightly above 1.1984 for many of our results
to be valid. The last assumption is that the product hAr is
large, since this will ensure that breaks are rare and “thin”
(see below).

For any good component C define =, to be the smallest
z-coordinate of any point on any separating path to the
right of 4. This is equivalent to the requirement that the
separating path is to the right of C, except in the (generally

T

rare) case when C is not within distance % of either the

top or the bottom of the strip Sj,. Similarly define x5 to



be the largest x-coordinate of any point on any separating
path to the left of v2. Note that although 72 is not uniquely
determined, mg and z are independent of the choice of v
(see Figure 3).

Now define the width of a good component C' to be xJCC —
xo. If this is positive, then it is also equal to the mini-
mum horizontal distance between separating paths 41 and
~~ where 4t corresponds to the break immediately to the
right of C, and 7~ corresponds to the break immediately
to the left of C. Note that the width of a good component
may be negative. Define the width of a break between good
components €7 and C3 to be zg, — xa. This is also the
maximum horizontal extent of any separating path v be-
tween C1 and C2 that lies between 'y%l and 7%2. Note that
when the strip is finite, the separating widths of the good
components and the widths of the breaks add up to the total
length of the strip.

LEMMA 2. Assume r > 6. Then the average width of
a break is at most max{5h,1/h + 2h} and the proportion
of good components with width less than w > 0 is at most
(w4 T7)e™".

It should be noted that due to the ergodicity of the model
Gh,r x, terms such as “average width” and “proportion” are
well defined.

PROOF. (Sketch) The full details are too long to give here.
For further details see [1]. The idea is to tile S}, with small
a X b rectangles, where h/b is an integer, a & b, and the di-
ameter (a® —|—b2)1/2 of these rectangles is 7. The collection of
rectangles intersecting a separating path v must form a con-
nected region that is devoid of sensors. One can put a lower
bound on the size of this region in terms of h and the hori-
zontal extent of 7. One can then bound the number of such
possible connected regions of any given size, and bound the
probability that such a region is empty. This places a bound
on the probability that such a 7 exists starting in some fixed
rectangle, and hence gives an upper bound on the number
of wide breaks. We obtain a lower bound on the total num-
ber of breaks by considering empty r X h rectangles, with
all h/b of the small a x b rectangles immediately to the left
containing a sensor (thus guaranteeing a good component
exists immediately to the left of the empty rectangle). Us-
ing these two bounds gives a bound on the expected width
of a break of 5h provided h > 5. If h < 5 then every sensing
region crosses Sp, and one can bound the width of a break
by X + 2h, where X is an exponential random variable of
mean 1/h giving the extra horizontal distance between sen-
sors above the minimum needed to form the break. This
gives a bound of 1/h 4+ 2h on the expected width of a break.
For the width of a good component, we fix a “leftmost” path
~% and use a similar tiling strategy to estimate the proba-
bility that a separating path exists to the right of 4% that
gets within horizontal distance w of 4. For each rectan-
gle at the top of Sj, we bound the probability that such a
separating path originates there by bounding, as above, the
size of the collection of rectangles that must be devoid of
sensors, and the number of possible such collections. This
probability decays exponentially as the horizontal distance d
of the starting rectangle from 2 increases (since the width
of the separating path must be at least d —w and this forces
an increasing number of empty rectangles as d — oo). Thus
we obtain a finite bound on the probability that any such

separating path exists, and hence on the probability that
the good component has width < w. Integrating this bound
then gives a bound on the expected width of a good compo-
nent. In all cases, we carefully optimize a and b for different
values of h so as to obtain our precise bounds. [J

As a result of Lemma 2, the breaks are generally small
and well separated. Using Theorem 1.21 in [4] and some
work one can deduce that the probability distribution of
the number of breaks in Gy, (a, b) is approximately Poisson.
Thus, we get the following result. (For detailed proof see

(1))

LEMMA 3. Assume r > 6 and z > 0. Then the proba-
bility that G -(0,2/Iy,) contains exactly k breaks tends to
e "z* /k! as h — oo.

Note that although breaks are defined only for the infinite
strip, under the conditions of Lemma 3 breaks are unlikely
to intersect the lines x = a or x = b. Hence any ambiguity
in “the number of breaks in G} .(a,b)” caused by breaks
overlapping the ends of the strip is unimportant.

For practical purposes one would aim to make the exis-
tence of any break very unlikely. In this case one can use
the following more precise result.

LEMMA 4. If r > 6 and h > 1 then
P(Gh,»(0,£) is not s-t connected) < (£+ 5h) 1}, .

PROOF. If a separating path exists in G}, (0, £), then [0, £]
must intersect one of the intervals [xa , 1’57,“] corresponding
to the breaks in G}, . Equivalently, either ma € 10,4, or
0€lzf, g, ,,] for some i. The expected number of i’s with
the first property is ¢I , since the asymptotic density of
points xJCC equals the density of breaks Iy ,. The expected
number of i’s with the second property is at most 5hlp
since the expected width of a break is at most 5h (for h > 1)
and their density is I5,». Thus the probability of a separating
path in G -(0,¢) is at most (£ + 5h)I,,. [

By Lemma 3, the bound given by Lemma 4 is very close
to the truth when h <« ¢ and ¢I,, < 1 (see Figure 9 and
Figure 10). Indeed, the main error appears to be due to the
finite size of a break as compared to the length of the strip
causing breaks to overlap the ends of the strip, as suggested
by the proof of Lemma 4.

Bc X Xe
Figure 3: Definition of 72 (solid path) and z3.
Crosses indicate the rightmost point to the left of
72, or leftmost point to the right of 7% that a sepa-
rating path can pass through.



S. HEURISTICS

In this section, we introduce some non-rigorous heuristics
about the number and type of components in G .. The
purpose is to provide intuitive methods for estimating the
probability of coverage and/or connectivity that do not re-
quire extensive derivations, but at the same time provide a
fairly accurate first guess. We generally assume r is large, so
that in most areas the graph G}, , is highly connected. The
main idea is the concept of “excluded area”, that is that rare
configurations can be described by the absence of sensors
within some nice region A. Outside A, the density of points
will be assumed to be close to the normal expected density,
which will result in a high degree of connectivity.

Given a region A, the probability that it contains no sen-
sors is e |4l where |A| is the area of A (assuming A\ = 1).
We consider the minimal regions A that can force a com-
ponent, or a break, under the assumptions that there is a
reasonable density of sensors outside of A. For example,
a break is very likely to be caused by an excluded r x h
rectangle across the strip (see Figure 4). On either side of
this rectangle, the components are very likely to be good
(for large r), but the region disconnects G, .. This region is
the smallest such region to give a break, so we expect most
breaks to be approximately rectangular, and the frequency
of breaks I, to be about e ™", (More precisely he™"", since
such a rectangle can be placed after any sensor, and there
are about h sensors per unit distance along the strip.) Small
components can form near the boundary of Sj, with an ex-
cluded area of %717"2, or in the interior of S; with excluded
area mr2. Hence these are likely to occur with frequencies
about e~/ and e~ """ respectively. Note that if h < Fr,
then breaks should be more common than these small com-
ponents, and so most components are likely to be good. On
the other hand, if o > 7, then most components are likely
to be small (bad) components that do not form breaks.

[
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Figure 4: Minimal excluded areas for breaks, small
components near the boundary and in the interior,
compound breaks, and diagonal breaks.

Compound breaks (breaks containing homotopically in-
equivalent separating paths) need an excluded area of at
least hr 4+ (5 — ?)r2 > hr (see fourth example in Fig-
ure 4), so at first sight these seem far rarer than simple
breaks. Generally this is true, however we need to take care
of combinatorial issues — how many ways such breaks can
occur. It is possible for compound breaks to be more com-
mon than simple breaks if h is extremely large, in particular
if 1 « r? <« logh. This is because although we lose a
factor of e~ in the frequency of compound breaks due
to the extra O(TQ) excluded area, we gain a combinatorial
factor of h due to the choice of the vertical position of the
small component inside the break. (The excluded area is
still hr + O(r?) even if the small component is in the center

of the break.)

Although we expect most breaks to be vertical excluded
rectangles, diagonal breaks are also possible. If the top of
the break is displaced by a distance d, the excluded area
becomes rv/h? + d? ~ hr + %. If rd® ~ h this does not
impose a large pgmalty, so we may expect breaks to often
deviate by about = h/r from vertical.

These heuristics tend to be good for large r, however,
corrections are needed for the effects of finite . These cor-
rections tend to make breaks more likely as we shall see in
the next section.

6. ESTIMATING BREAK INTENSITY

Having shown in Section 4 that breaks occur with distri-
bution close to a Poisson process, we now derive the break
intensity. Once we have the break intensity, it is a fairly sim-
ple matter to either estimate or bound the probability that
no breaks exist in a strip of given length (which is equivalent
to the strip being barrier covered) using either Lemma 3 or
Lemma 4.

We are mainly interested in the case when h is larger
than r. To estimate I, for large h, we shall reduce it to
the case of small h. Thus we shall need to study the small h
case in some detail. We count the number of points that are
the rightmost point of some good component, since this is
equivalent to counting good components, and hence breaks.
The ideas used naturally reflect the heuristics of the last
section, since if a sensor v is to be the rightmost point of
a good component, then there must be an excluded area to
the right of v.

For h < @r, all components are good, so the probability
that a fixed sensor v is the rightmost sensor of a good com-
ponent is given by the probability that there is no sensor to
the right of v that is joined in Gp, » to v or to any sensor to
the left of v. To calculate this probability, fix v, and place
sensors to the left of v according to a Poisson process. Then
conditioned on the process to the left of v, the probability
that v is the rightmost sensor of a component is e 14! where
A is the region to the right of v that is within distance r of
v or any sensor to the left of v. The probability that we are
interested in is just E(e~!!) where the expectation is over
the position of v and the state of the Poisson process to the
left of v. The intensity of such sensors, and hence of breaks,
is then given by

In, = hE(e 4, (2)

since the intensity of sensors per unit length of the strip is
just h. It remains to calculate E(ef‘Al). The excluded area is
the union of a number of disks. We first approximate these
areas by parabolic regions, replacing the disk (z — wo)2 +
(y—vo)? < % about a sensor (zo, yo) by the parabolic region
z—x0 < 7—(y—1yo0)>/2r. We then estimate the excluded area
as hr — |B|, where B is the shaded region in Figure 5 which
lies to the right of all these approximating parabolas and to
the left of the vertical line which is at distance r to the right
of v. The advantage of this approximation is that the two
parameters r and h can be reduced to a single parameter z =
hr~/3 by rescaling the strip by a factor r'/% along the z-axis
and by a factor r1/3 along the y-axis. This rescaling leaves
the density of the Poisson process and all areas unchanged,
but puts the parabolas in the form z = 2o — (y — y0)?/2. If
for convenience we swap the x and y-coordinates, B can be
defined by placing a Poisson process with intensity 1 in the
half infinite strip [0, z] X [0, 00) plus one more point chosen



uniformly at random on [0, z] x {0} and then taking the area
below all the parabolas y = yo + (x — z0)?/2, where (20, o)
ranges over all of these points. Define £(z) by

e(z) = zE(eB). (3)

/

Figure 5: Approximating excluded disks by parabo-
las. The point v is the rightmost point of the good
component, and v is another point to the left of v.
The excluded area A consists of the interior of all
the circles that lies to the right of v, so |A| =~ hr —|B].
For clarity, the picture is drawn with A > r. Diagram
on the right is used in the proof of Lemma 5.

LEMMA 5. There exists absolute constants o and (3 such
that loge(z) = az+ B+ o(1) as z — 0.

(Note, throughout this article, log denotes the natural loga-
rithm.) A detailed proof of Lemma 5 is too long to include
here, but is given in [1]. The basic idea is to show that
e(z1422)/e(z1)e(22) tends rapidly to some constant (= e~?)
as min{z1, 22} — oco. To do this, one decomposes the area B
for z = z1 4 22 into two pieces, the part above [0, zl] and the
part above [z1, 21 + 22] (see Figure 5). If y1 (resp. y2) is the
height of the lowest vertex on the left (resp. right), then the
set of vertices can be written as a union of P + (0,y1) and
P2+ (z1,y2), where P1 and P» are corresponding configura-
tions used in the definition of e(z1) and e(z2). The area |B|
can be calculated as |Bi| + |Bz| + |R| — |C|, where B; and
Bs are the corresponding areas for z = 21 and z = 22, R is
either [0, z1] x [0,y1] or [z1,21 + 22] X [0, y2] depending on
whether y2 or y; is zero, and C is the set of points that are
below all the parabolas corresponding to vertices on their
own side, but above a parabola corresponding to a vertex
on the opposite side. Fixing the configurations P; and Po,
one obtains (after some calculation)
z
BilglBal 1€l g,

—o0

e(z1 + 22) = z122Ep, Ep,e

where Ep, and Ep, are expectations over the corresponding
configurations and x is the distance of the top left point of Bs
over the top right point of By, so that |C| = 0 when z = 0.
The integral of e 1C g O(d1+d2+1) where d; is the distance
to x = z1 of the furthest vertex v; of P; that defines the
parabolic boundary of B; at some point © € [z1 — 1, 21 + 1].
One can show that when one takes expectations over P; and
P2, the configurations with large d; make an insignificant
contribution to the expectations and when the v; are not the
lowest vertices, the integral does not depend on z; and z».
From this one can show that for large z1 and z2, €(z1 +22) is

very close to cz122Ep, Ep,e/PrlelP2l = ce(21)e(22) for some
constant ¢ > 0 independent of z; and z2.

Computer simulations were performed to estimate e(z) for
various values of z (see Figure 6). Using these results, the
constants in Lemma 5 were estimated as

a= 1.12794 £ 0.00001
B = —1.05116 £ 0.00005 (4)

(errors are +1 standard deviation). The o(1) error term
in Lemma 5 appears to tend to zero extremely rapidly as
z — co. Indeed, the approximation £(z) ~ e***# is within
2% of the correct value when z > 0.85, and for z > 3 the
error is insignificant (see Figure 6).

For small z, one can expand &(z) as a power series in z.
One can show that the only non-zero terms are of the form
cz' 3% The first few terms are

_ 1.4 7 1,101 13
£(2) = 2+ 132" + 02" + gp02 2731600% T -

We obtain these coefficients via symbolic integration using
Mathematica.

.02
log &(z) — 1.12794z + 1.05116
.0H
0 2 3 4 5
-.01
-.02

Figure 6: Plot of loge(z) —1.127942+1.05116 against z.

THEOREM 6. If h < @r then
In = 1%e(hr™/3) exp(—hr 4+ O(hr~*/%)). (5)

PROOF. Substitute z = hr~'/3 into (3) and use (2) with
|A| = hr —|B|. To estimate the error in this approximation,
we note that the parabolas y = yo + (z — #0)?/2 used in the
definition of €(z) need to be replaced by ellipses, which can
be approximated as y = yo+ (z—z0)?/2+0(r~*3(z—x0)*).
Following the proof of Lemma 5 we see that the error in
the exponent is O(zr~*/3) = O(hr=%/%) provided that the
slopes of the boundaries of the excluded regions do not pass
through vertical. This occurs provided the excluded disks in
the original formulation do not have horizontal boundaries
inside the strip. But the disks are of radius r and the height
of the strip is less than r, so this does not happen. []

To extend Theorem 6 to larger h, two additional lemmas
are required. The first shows that for h = o(r?), most breaks
are “rectangular”. Let C' be a good component, and let
be the rightmost boundary of the excluded area to the right
of C, i.e., the boundary of the set of points in S;, that are
within distance r of some vertex of C.

LEMMA 7. If r > 6 then the proportion of good compo-
nents for which v, deviates more than an angle 6 from verti-
cal at any point is at most e~ (0—sin8)+ch for some absolute
constant ¢ > 0.



The proof (details given in [1]) involves a tiling argument
similar to that used in Lemma 2, bounding the number of
choices for the rectangles meeting the rightmost possible
path v& of C, and the size of the excluded area resulting
from each choice.

LEMMA 8. Ifr > 6 and h = h1 + he, hi,ha > 7, then
Cir oy o dngr < Ini < Cohdiy wIng
where C1 and Ca are positive absolute constants.

PROOF. (Sketch) Cut the strip S} horizontally into two
strips Sp, and Sh, (with Sp, on the top). If a separat-
ing path exists for Sj then it also separates Sp, and Sh,.
For at least half of all breaks in Sy, the breaks caused in
Sh, and Sp, must be within 10h of each other (otherwise
the average width of a break in Sj would be more than 5h
contradicting Lemma 2). The frequency of breaks in Sp,
which can be extended to a break in S5 of width at most
10h is bounded by 15hIn, rIn,,» (adding another 5h to take
account of the widths of the breaks in Sy, and Sh,). Thus
the total frequency of breaks in Sy is at most 30hIn, Iy, r-
Similarly, for the lower bound, a coincidence of a break in
Sh, and in Sy, can give rise to a break in Sj. Typically
however, the relative positions of these breaks must be cor-
rect to within O(1/r), but this still gives a lower bound on
I, of Clrfllhlwlhz,r. For more details see [1]. [

THEOREM 9. For r > 6 and all h > 0,
Iny = r"%e(hr ™%y exp(—hr + O(hr~>'?)).

PROOF. (Sketch) Using Lemma 7, the argument used in
Theorem 6 can be extended to h = 0(7"2). For larger h, one
uses Lemma 8 to reduce inductively to the case h ~ rd/3te,
the error introduced by the Cir~ ! and Csoh terms being

swamped by the O(hr75/3) error term in the exponent. []

Note that even without Theorem 6, Lemma 8 implies that
for large, but fixed r,

I, = efarhﬁ»o(log h) (6)
as h — oo, where - is some constant dependent on . Using
Theorem 9 we can identify . as

ar=1—oar 340703 (7)

where o = 1.12794 is as in Lemma 5.

7. SIMULATION RESULTS FOR BARRIER
COVERAGE

In this section, we provide results of our simulations and
compare them with our estimates. Note that we are mostly
interested in cases when the probability of achieving bar-
rier coverage is closer to 1 (lower portion of the curves in
Figures 7 and 9, both of which have logarithmic scale for
the probability). This event occurs for sufficiently large val-
ues of 7 and h so that the conditions of our theorems are
satisfied. The main result is that our estimates are almost
indistinguishable from that observed in simulations even for
short strips. All our simulations are sufficiently extensive to
provide extremely accurate results, for example, the simula-
tions estimating the probability of a break in a short strip
were run over ten million times for statistical validity. As

discussed in Section 4, we assume that all distances have
been scaled by a factor of v/ so that we may assume A = 1.

Our theoretical results strongly suggest that (6) can be
strengthened to

Inr = 6_07‘h_57“+0(1)7 (8)

or more generally
Inr oy = ﬁexp(—arﬁh — B, sx+0o(1) (9)
where for fixed r the o(1) term tends to zero as h — oo and
ar=r—ar P 0>Fr?),
B =—3logr — B+ 0" (10)

as r — oo. This does not quite follow from the above,
since we may still have a small O(logh) error term in the
exponent. We believe however that this is just an artifact
of the proof. Indeed, the logh term in (6) comes from the
O(h) bound on the expected width of a break (Lemma 2)
used in Lemma 8. In practice, one should use the amount
by which the breaks in S, and Sk, can be moved relative
to one another and still form a break in S%. This should be
O(1), and in particular should not depend noticeably on h.

Figure 7 plots the logarithm of the frequency of breaks
observed in simulation against h for various values of r to-
gether with the best fit estimate for the approximating linear
function —a,h — B,. The estimated values of a,- and 3, are
listed in Table 1. We observe that these linear approxima-
tions provide an extremely good fit to the simulation data
except when r is close to the critical radius for the Gilbert
model r. &~ 1.1984. As mentioned in Section 4, the network
becomes highly disconnected in this case, and so the slope
a, tends to zero, as r decreases to r..

Iog(l()} ! 2 3 4 5 6 7 h 8
AN r=15
-6
. r=175
" r=2
-12 :
-14) r=16 =8 r=6 r=4 r= r=2.

Figure 7: Plots of log(/,,) against h for various val-
ues of r. Dotted lines indicate the linear approxima-
tion —(a,h + Br).

The simulated values of «, do indeed appear consistent
with the theoretical estimate in (7). Using simulations, one
can estimate the error terms for o, and (3, giving

ar ~ ot =1 — 1.127947 /% — 0.20r %3
Br ~ B2 = —Llogr +1.05116 + 0.277*/? (11)

Note that the constants 1.12794 and 1.05116 are the con-
stants from Lemma 5, and only the last coefficients (0.20
and 0.27) were estimated from the simulation estimates of
ar and B.. From Table 1 one sees that the approximations
in (11) are extremely good for 7 > 3, but get progressively
less accurate for smaller values of r.



Figure 8: Plots of log(In,r) + arh + B, against z =
hr=/3 for r = 3,4,6,8,16 (outer to inner solid lines
respectively). Dotted line indicates the estimate
loge(z) — az — .

By comparison with (5), the o(1) term in (8) should be
approximately equal to loge(z) — az — 3 where z = hr=1/3,
Figure 8 shows the values of this error term obtained from
simulations for r > 3 (for < 3 the error is much larger).
Once again, the theoretical result is very close to the results
from simulations.

r ar Br as oot
1.25 0.0428[1} 3.6200[15] 0.0650 1.1773
1.5 0.3668[1] 1.6790[15] 0.4129 1.0732
1.75 0.7018[1} 1.2198[10] 0.7353 0.9927
2 1.0195[2] 1.0240[10] | 1.0418 0.9273
2.5 | 1.6152[2] 0.8490[10] | 1.6255 0.8253
3 2.1809[2} 0.7548[10] 2.1859 0.7474
4 3.2678[2] 0.6342[10] 3.2696 0.6316
6 5.3686[2} 0.4801[10] 5.3692 0.4787
8 7.4296[1] 0.3751[2] 7.4298 0.3749
16 | 15.5504[1] 0.1337[2] | 15.5504 0.1337

Table 1: Estimates of a,- and 3, from simulations, to-
gether with the approximations given by (11). Num-
bers in square brackets indicate approximate 1 stan-
dard deviation errors in the last decimal place.

Finally, Figure 9 shows the probability that G, (0, ¢) is
not s-t connected in the special case h = 2, r = 1, £ = 10,
with varying A, together with the estimate 1 —exp(—£In,r2)
based on the assumption that breaks occur with an exact
Poisson distribution with mean 41 ,,. Figure 10 gives a
more detailed comparison in this case.

In summary, despite the stated condition that h — oo in
(8), if r > 3 and z = hr~® > 2, the o(1) term in this
equation is infinitesimal (as seen from Figure 8), and the
break intensity can be well approximated by the following
simple expression

Iy A e (12)

)

where a, and (3, are given by (11). Further, notice that al-
though we required r — oo in (10), one can see from Table 1
that the estimates of . and (3, given by (11) are quite accu-
rate for r > 3. To achieve barrier coverage with a reasonably
high probability, the values of h and r will generally satisfy
these conditions, and therefore as demonstrated in Figure 9
our estimates are quite reliable even for short strips.
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Figure 9: Comparing the probability of the existence
of a separating path in G}, 1(0,¢) (dashed line) with
the estimate 1 — exp(—{Ip ) (solid line) for ¢ = 10,
h =2, r =1 and varying A The lower dotted curve
is the estimate from the asymptotic conditions for
weak barrier coverage from [13].
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Figure 10: Ratio of the probability p of the existence
of a separating path in G, x(0,¢) to the estimate
e = 1 —exp(—lIpy, ) for £ = 10, h = 2, r = 1 and
varying A.

8. FULL CONNECTIVITY

We now consider full connectivity of the network. Here
we deploy the sensors according to a Poisson process in the
rectangle R = [0,¢] x [0, h] and join two sensors if they are
within distance r of each other. We require that the resulting
graph G is connected. In [18] this problem was considered
for deployment in a square. To bound the probability that
the graph is disconnected, one usually bounds (a) the proba-
bility that a small component exists, and (b) the probability
that (at least) two large components exist. Here “small” typ-
ically means diameter O(+/log A) where A = (h is the area of
the deployment region. In the case of a square (or any “thick”
convex region), the probability (b) is much smaller than (a).
Moreover, provided we are in a regime where small com-
ponents are unlikely, (a) is dominated by the occurrence of
isolated vertices, i.e., components with just one sensor. For
the case of thin strip deployment, (a) is once again dom-
inated by the occurrence of isolated vertices, however the
contribution from (b) may also be important. Indeed, large
components can occur as the result of a break. Heuristi-
cally, we expect small components (or isolated sensors) near



the boundary with frequency about e=>%/2 and breaks to

occur with frequency about e *"". Thus if h < 57 then
breaks will dominate, while if 4 > Zr then isolated sensors
will dominate.

The expected number of isolated sensors in a deployment
region R can be calculated exactly since a sensor u is isolated
if and only if the region D, (u) \ {u} is empty, where D, (u)
is the disk of radius r about u. Even conditioned on the ex-
istence of u, this occurs with probability exp(—|RN Dy (u)]).
Thus the expected number of isolated sensors is

Ei = Xexp(—A|RN D,(u)|) du.
R

Similarly, the expected number of components of size k is
zZ Z

Ep=% N exp(=A|R N (UiDy(wi))]) dus . . . dug,

where the integral is over all configurations of k sensors
U1, ...,ur that form a connected set and the % factor com-
pensates for the fact that permutations of wq,...,ur give
rise to the same component. Calculating F1 or even FEs
may be feasible, however these integrals very quickly become
unmanageable. Define Ej, as for Ej, but restrict the integra-
tion over ui, ..., ux to those configupstions that form a bad
component. In [18] it is shown that =~ 2, B}, = O(E1/\r?).
Indeed, the proof in [18] first estimates the number of small
components, assuming that these components do not get
close to opposite sides of the region. (Since [18] assumes a
large square region, this is automatic.) Then [18] estimates
the number of large components. However, the proof relies
on the fact that a large component must be surrounded by a
large empty region, which is not valid for thin strip regions
when these components are close to both sides of the strip.
Hence in both cases, the proofs in [18] are valid provided we
restrict to counting only bad components. But good com-
ponents are counted by the intensity of breaks Iy, x. Thus

<
P(G disconnected) < P(Gh,r2(0,¢) has break) + Ej,

k=1
< Uy + B+ O(hdn ey + Er/Xr%).  (13)

Moreover, using Theorem 1.21 from [4], one can show that
the isolated vertices and breaks are approximately Poisson
distributed. Thus the inequality in (13) is close to equality
when the right hand side is small compared with 1.
Assuming h > 2r, and ignoring effects at the end of the
strip (or, by imposing connectivity at the end of the strips
as in Gp,r2(a, b)), one can calculate E; explicitly as
Er = M(h+ 2(a — D)r)e >
where
z
/2 .
o= e)\r2 (0—cos 0 sin 0) sin 0 do.
0

Approximating this integral and using (13) we obtain
P(G disconnected) =
Clnpr + Mhe N 4 L7 2/2 (1)

when the right hand side is small compared with 1.

Figure 11 shows the probability that the graph is discon-
nected, together with an estimate formed by adding contri-
butions from Iy, (breaks), Ef = Ei, E3, and Ej3 (small

bad components). In Figure 11, h = 2 is close, but larger
than Zr ~ 1.5, so for large ), isolated sensors dominate this
probability. However, the correction terms to the estimate
L= for breaks result in the breaks dominating when X is
small.
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Figure 11: Probability that model in [0, 10] x [0, 2] is
not connected (dashed line) with estimates based on
separating paths (py =1 — exp(—£Is,-2)), bad compo-
nents of sizes 1, 2, and 3, (p; = b~ exp(—F;)) and
the sum of these (1 —exp(—£In,\— ., El), top solid
line).

9. FULL COVERAGE

In this section, we consider full coverage, i.e., we wish
the entire rectangle to be covered by some sensing region.
Suppose we place sensors in the rectangle R = [0, /] x [0, h]
with density A\. We wish to know if every point in R is
covered by at least one sensor. Let the sensing region of
the sensor u be D(u) = D, /2(u). Let OR and 0D(u) be the
boundaries of these regions (so dD(u) is a circle of radius 7).
Following [11] (see also [13]), we note that R is covered by
the sensor regions if and only if all the following conditions
hold.

(a) OR intersects some circle 9D (u).

(b) If z is an intersection of the boundary R and some
circle dD(u), then z € D(v) for some v # u.

(c) If z € R is an intersection of two circles dD(u) and
0D (v), then z € D(w) for some sensor w # u, v.

Since each of the intersections above consist of at most 8
points, this gives a polynomial time algorithm for determin-
ing whether or not a specific set of sensors covers the region
R. Compared to using a virtual grid as in [15], this algo-
rithm is both more efficient and more accurate.

We now estimate the contributions from (a), (b), and (c).
For (a), failure only occurs if there is no sensor within 3
of the boundary of the rectangle, so occurs with probability
exp(—rP/2 + %), where P = 2¢ + 2h is the perimeter of
the rectangle. In any practical application, this probabil-
ity is extremely small. For (b) we estimate the number of
uncovered intersections with the boundary. Ignoring the ef-
fects of corners for the moment, the number of points within
5 of the boundary is about ArP/2. There are twice this
number of intersection points, each of which is uncovered
with probability exp(—Anr?/8). Thus we obtain on average

ArP exp(—A7rr?/8) uncovered intersection points. However,



if there is one uncovered intersection, then there must be an
uncovered interval in OR, and hence at least two uncovered
intersections. Thus we can bound the probability of an un-
covered intersection point by half this number. Hence the
probability that (b) fails is at most

Pr= 27204 2h + (a — 4)r)e /3, (15)
where, for h,£ > r,
Z
™2 a2 0 0 sin @
a=2 e 5 (0mcosOsin®) (9 _ gin @) sin 6 do (16)

0

is a correction term for the corners.

For (c) we split the estimate into two cases. The first
is when all uncovered intersections are at least 5 from the
boundary. In this case, each sensor region intersects at
most Arr2 others on average, leading to 2Anr? intersection
points. Multiplying by the average number of sensors and
dividing by 2 to correct for double counting, we have on
average A\2mr? A intersections, where A = fh is the area of
the rectangle. There are at least three uncovered intersec-
tions, if there are any, so the probability of an uncovered
region is at most P = $A\’7r®exp(—Anr®/4). Note that

P>, < %Pf < I%Pf, so if P; is small, P> is much smaller.

Figure 12: Estimating the probability that an inter-
nal intersection is uncovered.

Finally we need to consider the case when the boundary of
T

R is covered, but there are uncovered intersections within 3
of the boundary of R. We count the uncovered intersection
points that are the closest such point to the boundary of R.
Assume for simplicity that we are far from a corner of R
and suppose the uncovered intersection w is the intersection
of OD(u1) and 0D(u2), and wu; is at distance z; from the
boundary. Since the intersection is the closest point to the
boundary that is uncovered, u; and uz must be on oppo-
site sides of u, and u must be at least %(acl + x2) from the
boundary itself (see Figure 12). Since the area |D(u)NR| is a
convex function of the distance = € [0, 5] of u to the bound-
ary OR, we have |D(u)NR| > ”;2 (r+2z) > %f(r—i—xl +x2)
when z < % Also, u1 and u2 must be within horizontal dis-
tance r of one another for any such intersection to exist.
Thus we can bound the probability of such an uncovered

point by

z > — AT (rpay o)y 2
rP e 8 A dxidxo
)
2
32 —AmrS g 2 128
=ArPe ¥ (55)" < oe P

It can be checked that if u is near a corner, the estimate
above is still an overestimate, so once again, in all practical
cases PP dominates the probability that a point is uncovered.
Indeed, the probability that the strip is not fully covered is
at most

Pi(1 4 128/7°\r” + Py /12) + exp(—rP/2 +72),  (17)

0.014 )

0.00% . RS- . . .
10 15 20 N ) 35 40

Figure 13: Probability that model in [0,10] x [0, 2]
with » = 1 is not fully covered (dashed line), with
estimate 1 — exp(—P;) based on number of uncovered
intersections on the boundary (solid line). (Note
that these two curves are almost indistinguishable.)
The probability that the boundary is covered but
the interior is not is also shown (dotted line).

which is very close to P; in all practical cases. One can show
(see [1]) that uncovered intervals on the boundary OR are
not strongly correlated, so if P; is small there are unlikely to
be more than one such interval. Hence the expected num-
ber of such intervals P; is close to the probability that one
exists. Figure 11 shows the probability that a rectangle is
uncovered, together with the estimate based on P; and the
(much smaller) probability that OR is covered, but R is not.

10. CONCLUSIONS AND FUTURE WORK

In this paper, for the first time, we derive reliable density
estimates for achieving barrier coverage and s-t connectivity
in thin strips. Ours is also the first work to derive reliable
density estimates for achieving full coverage and full con-
nectivity. Central to our derivations is a novel definition of
breaks (gaps in connectivity). We show, using simulations,
that our estimates are very accurate predictions of the actual
behavior even for small deployment regions. Such accurate
estimates make our results readily usable in practice, bridg-
ing the gap between theory and practice.

Since ours is the first work for thin strip regions, there
are several interesting problems that remain unaddressed.
First, instead of 1-coverage (and 1-connectivity), k-coverage
(and k-connectivity) may be needed in real deployments for
fault-tolerance and load balancing. Second, the deployment
regions may be non-rectangular. Our preliminary results
suggest that our estimates are sufficient for non-rectangular
regions, as well. But, it needs further investigation. Third,
disks are not always the best model for sensing and com-
munication. Other models have been proposed in the lit-
erature [5, 27]. Finally, other deployment models such as
deterministic deployment on grids that are subject to errors
in placement may be more appropriate in certain deploy-
ment scenarios. We propose to investigate these and other
variations in future.

11. REFERENCES

[1] P. Balister, B. Bollobds, A. Sarkar, and S. Kumar.
Reliable density estimates for coverage and
connectivity in thin strips of finite length. Technical
report, University of Memphis, Available at:



[10]

[11]

[12]

https://umdrive.memphis.edu/pbalistr/
public/ThinStripComplete.pdf, 2007.

P. Balister, B. Bollobés, A. Sarkar, and M. Walters.
Connectivity of random k-nearest-neighbour graphs.
Advances in Applied Probability, 37:1-24, 2005.

P. Balister, B. Bollobéds, and M. Walters. Continuum
percolation with steps in the square or the disk.
Random Structures & Algorithms, 26:392-403, 2005.
B. Bollobéds. Random Graphs. Camridge University
Press, 2001.

Q. Cao, T. Yan, J. A. Stankovic, and T. F.
Abdelzaher. Analysis of target detection performance
for wireless sensor networks. In DCOSS, 2005.

M. Cardei, M. Thai, and W. Wu. Energy-efficient
target coverage in wireless sensor networks. In /EFFE
INFOCOM, 2005.

O. Dousse, F. Baccelli, and P. Thiran. Impact of
interferences on connectivity in ad hoc networks.
IEEE/ACM Transactions on Networking,
13(2):425-436, 2005.

O. Dousse, P. Thiran, and M. Hasler. Connectivity in
ad-hoc and hybrid networks. In IEEE Infocom, 2002.
R. B. Ellis, X. Jia, and C. Yan. On random points in
the unit disk. Random Structures and Algorithms,
29(1):14-35, 2006.

E. Gilbert. Random plane networks. Journal of the
Society for Industrial Applied Mathematics, 9:533-543,
1961.

E. Gilbert. The probability of covering a sphere with
n circular caps. Biometrika, 56:323-330, 1965.

P. Gupta and P. R. Kumar. Critical power for
asymptotic connectivity in wireless networks. In IEEE
87th Conference on Decision and Control, pages
1106-1110, Tampa, FL, 1998.

P. Hall. On the Coverage of k-Dimensional Space by
k-Dimensional Spheres. Annals of Probability,
13(3):991-1002, 1985.

S. Kumar, T. H. Lai, and A. Arora. Barrier coverage
with wireless sensors. In ACM MobiCom, pages
284-298, Cologne, Germany, 2005.

S. Kumar, T. H. Lai, and J. Balogh. On k-coverage in
a mostly sleeping sensor network. In ACM MobiCom,
pages 144-158, Philadelphia, PA, 2004.

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

[26]

27]

S. Kumar, T. H. Lai, M. E. Posner, and P. Sinha.
Optimal Sleep Wakeup Algorithms for Barriers of
Wireless Sensors. In Fourth International Conference
on Broadband Communications, Networks, and
Systems (IEEE BROADNETS), Raleigh, NC, 2007.
X.Y. Li, P. J. Wan, Y. Wang, and C. Yi. Fault
tolerant deployment and topology control in wireless
networks. In ACM MobiHoc, pages 117-28, Annapolis,
MD, 2003.

M. D. Penrose. Random Geometric Graphs. Oxford
University Press, 2003.

E. Peserico and L. Rudolph. Robust network
connectivity: when it’s the big picture that matters.
SIGMETRICS Perform. Evaluation Review,
34(1):299-310, 2006.

S. Quintanilla, S. Torquato, and R. Ziff. Efficient
measurement of the percolation threshold for fully
penetrable discs. J. Phys. A: Math. Gen,
33(42):L399-L407, 2000.

P. Santi. The critical transmitting range for
connectivity in mobile ad hoc networks. IEEE
Transactions in Mobile Computing, 4(3):310-317,
2005.

S. Slijepcevic and M. Potkonjak. Power efficient
organization of wireless sensor networks. In ICC, 2001.
P. Wan and C. Yi. Coverage by randomly deployed
wireless sensor networks. IEEE Transactions on
Information Theory, 52:2658-2669, 2006.

F. Xue and P. R. Kumar. The number of neighbors
needed for connectivity of wireless networks. In
Wireless Networks, volume 10, pages 169-181, March
2004.

H. Zhang and J. Hou. Maintaining sensing coverage
and connectivity in large sensor networks. In NSF
International Workshop on Theoretical and
Algorithmic Aspects of Sensor, Ad Hoc Wirelsss, and
Peer-to-Peer Networks, 2004.

H. Zhang and J. Hou. On deriving the upper bound of
a-lifetime for large sensor networks. In ACM
MobiHoc, pages 121-132, Tokyo, Japan, 2004.

G. Zhou, T. He, S. Krishnamurthy, and J. A.
Stankovic. Impact of radio irregularity on wireless
sensor networks. In ACM MobiSys, Boston, MA, 2004.



