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Abstract

Suppose sensors are deployed randomly in a long thin strip, and suppose each
sensor can detect objects within a fixed distance. We say that the sensors achieve
barrier coverage if there is no path across the strip that a small object can follow
that avoids detection by the sensors. We give fairly precise results on the probability
that barrier coverage is achieved as a function of the range of the sensors, the height
and length of the strip, and the number of sensors deployed. In particular, we show
that the most likely obstruction — a rectangular region crossing the strip which is
devoid of sensors — does not in general dominate the probability of failure of barrier
coverage.

1 Introduction

Imagine a collection of randomly placed sensors deployed in some region in the plane, each
capable of detecting events or objects within a given fixed distance. A natural and well
studied question is whether or not they cover the region of interest, in the sense that every
point in the region is in the sensing range of some sensor (see for example [12, 6, 7, 9, 3]).
In this paper we consider a somewhat different question. Instead of fully covering the
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region, one simply wishes to block the movement of an intruder say, across a long thin
strip. In this case, fully covering the strip is not necessary. It is simply enough that there
be no path across the strip avoiding the sensing regions. We call such coverage barrier
coverage and give fairly precise results on the probability of barrier coverage as a function
of the range of the sensors, the height and length of the strip, and the number of sensors
deployed.

Consider therefore a horizontal strip [a, b] × [0, h] of height h and length b − a ≫ h.
We shall assume each sensor has sensing range r

2
, so that two sensors will have overlapping

sensing regions when they are within distance r of each other. (The reason for this choice
of normalization will become clearer when we discuss the graphs Gh,r and Gh,r(a, b) defined
below.) As scaling all distances by a constant factor does not change the model, we will
assume without loss of generality that the scale is chosen so that there is on average one
sensor per unit area. If the sensors are required to lie inside the strip, then a vertical
crossing path at x = a or x = b is more likely to avoid the sensors than one near the
middle of the strip. Thus the regions of the strip close to the ends are in some sense
atypical. To avoid these “boundary problems”, we shall extend the strip horizontally and
allow sensors at points (x, y) with x < a or x > b. We shall however always insist that
y ∈ [0, h]. To do this, rather than fixing the total number of sensors, we shall instead
place the sensors according to a Poisson point process with intensity 1 in the infinite strip
R× [0, h]. This now ensures that any horizontal translate of a crossing path has the same
chances of avoiding the sensors. Of course, if b − a → ∞, then there will almost surely
be a crossing path that avoids the sensors. Thus we shall mainly be concerned with the
frequency of breaks along the strip where a crossing path can avoid sensors. Results for
a finite strip will then be deduced from this infinite model. This therefore motivates the
following formalized version of our problem.

We consider an infinite strip Sh = R × [0, h] of width (or height) h and place sensors
inside this strip randomly according to a Poisson point process P of intensity 1. We shall
assume that each sensor has the ability to detect intruders strictly within a (Euclidean)
distance r

2
and write Dv = {x ∈ R

2 : ‖x − v‖2 < r
2
} for the sensing region of a sensor

located at a point v ∈ Sh. Construct an infinite random geometric graph Gh,r with vertex
set given by the set of sensors P, by joining every sensor to every other sensor that is
strictly within distance r, that is, whenever their sensing regions intersect. For a < b,
define Gh,r(a, b) to be the subgraph of Gh,r consisting of sensors with x-coordinate lying in
the interval (a− r

2
, b+ r

2
), and with two extra “virtual” sensors s and t, where s is joined

to all sensors of P strictly within distance r
2
of the line x = a and t is joined to all sensors

of P strictly within distance r
2
of the line x = b (see Figure 1). The sensors s and t are

never joined directly to each other.
Define a separating path to be a continuous simple path in Sh starting at some point
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Figure 1: Model with sensor range r
2
(sensing regions indicated by shading). Dotted line

indicates a separating path — either a possible path of an undetected intruder, or a path
disconnecting s from t in the network.

on the line y = 0, ending at some point on the line y = h and not passing strictly within
distance r

2
of any sensor. The following is immediate from the above definitions and

standard topological properties of the plane.

Lemma 1. The graph Gh,r(a, b) contains a path from s to t if and only if there is no
separating path of the infinite graph Gh,r that lies entirely within the rectangle [a, b] ×
[0, h].

Thus the questions of avoiding separating paths, and obtaining long paths along Gh,r

are effectively equivalent, and barrier coverage can also be thought of as a question of
“percolation” in the Gilbert disk model (see for example [11, 13]) when confined to a thin
strip. Of course, strictly speaking there can be no percolation in a strip of bounded width,
as an infinite strip almost surely has a large gap somewhere with no sensors, and hence
no infinite component can exist in Gh,r. However, for large r and h, components can exist
that are exponentially large, and it is these components, and the gaps between them, that
we shall be interested in.

The presence of a separating path indicates a “break” in the coverage. The aim will
be to determine the frequency or intensity Ih,r of these breaks, defined so that the number
of breaks in [a, b] × [0, h] is on average (b − a)(Ih,r + o(1)) as b − a → ∞ (the o(1) error
including, for example, end effects near x = a and x = b). The precise definition of Ih,r
is given in Section 4. We also wish to estimate the probability that a break occurs in
a finite interval, or more generally the probability distribution of the number of breaks.
We aim to define the notion of a break so as to make breaks “almost independent”. This
will imply that the number of breaks in Gh,r(a, b) is given approximately by a Poisson
variable of mean (b − a)Ih,r, and in particular, the probability that no break occurs is
about exp(−(b− a)Ih,r).

The definition of a break is more delicate than it might appear at first. For example,
in Figure 2, should the two separating paths be considered as defining the same break, or
two different breaks? Since there may be several small connected “islands” in the break,
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Figure 2: Ambiguity in counting breaks. Do the two separating paths indicate two separate
breaks, or should we consider this as just one “compound” break? Also, there are several
small components of Gh,r that do not cause any breaks.

one may be able to construct very many homotopically distinct separating paths. The two
paths in Figure 2 are not really independent since the existence of one makes the existence
of the other much more likely. If we were to count these paths as distinct breaks, then the
probability distribution of the number of breaks in Gh,r(a, b) could be very far from Poisson,
and the probability of a break could be much less than the expected number of breaks,
even when the expected number of breaks is much less than 1. For this reason, we wish to
consider the situation in Figure 2 as a single break. There are several suitable definitions
of a break, which although different, give the same asymptotic frequencies when h and r
are large. The following definition is chosen since it is easy to compute in simulations and
is fairly convenient theoretically.

Define a good component as a (graph) component C of the infinite graph Gh,r which

contains a sensor strictly within distance
√
3
2
r of the top boundary ∂S+

h of Sh, and also

contains a sensor strictly within distance
√
3
2
r of the bottom boundary ∂S−

h of Sh. We
shall show (see the comments before Lemma 8 below) that there is a natural left-to-right

ordering of good components. Indeed, the
√
3
2
r in the definition was chosen to be the largest

value such that good components cannot “jump” past one another.1 Now define a break
to be the gap between two consecutive good components. In other words, a break is a
partition of the set of good components into two classes, those on the left of the break, and
those on the right, which is compatible with the left-right ordering of the good components.

Our main results are the following.

Theorem 2. Assume r ≥ 7. Then the intensity of breaks almost surely exists and satisfies

Ih,r = r1/3ε(hr−1/3)e−hr+O(hr−5/3) (1)

where ε(z) is the function defined in Section 6 below, and the constant implicit in the O(·)
notation is independent of both r and h.

1One could use any distance that is at most
√
3

2
r here, however the choice

√
3

2
r is needed in our proof

of Lemma 23.
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Note that h is arbitrary in Theorem 2, so the intensity is determined up to a factor of
1 + o(1) when h = o(r5/3) and r → ∞. Even for larger h, the logarithm of the intensity is
determined up to a factor of 1 + o(1) as r → ∞.

The lower bound of 7 on r is not best possible. Indeed, we expect Theorem 2 to hold for
all r ≥ r0 where r0 is any value above the percolation threshold rc ≈ 1.1984 for the Gilbert
model (see [11, 13, 14]). However, if r < rc then components are generally small, and so
good components are very rare (for large h). The breaks are therefore few in number, but
large in horizontal extent — it is easy to find crossing paths across the strip.

More details are given on the function ε(z) in Section 6, but we just note here the
following, which allows us to give a simple explicit expression for the intensity when h =
ω(r1/3).

Theorem 3. There exist constants α > 0, β, and η > 0, such that

ε(z) = exp
(

αz + β +O(e−ηz
1/9

)
)

as z → ∞.

Remark. The most “obvious” obstruction to barrier coverage is an r × h rectangle con-
taining no sensor (see Section 2). Based on this one would expect a break intensity of order
he−hr. However, as h→ ∞ the actual break intensity is exponentially larger, so the most
obvious obstructions do not dominate the break intensity. Indeed, the contribution given
by the obvious obstructions corresponds to taking ε(z) = z. However, ε(z) ≫ z when
z ≫ 1 (see also (30)). Equivalently, non-obvious obstructions dominate when h≫ r1/3.

Having estimated the intensity of breaks, we have the following result on the distribu-
tion of breaks. Here we say that Gh,r(a, b) contains a break, if there is a separating path
that lies entirely within [a, b]× [0, h] that induces this break (see Lemma 8). Note that by
Lemma 1, Gh,r(a, b) contains an s-t path if and only if it contains no break.

Theorem 4. Fix r ≥ 7, x > 0, and k ≥ 0. Then the probability that Gh,r(0, x/Ih,r)
contains exactly k breaks tends to e−xxk/k! as h → ∞. In particular, the probability of
barrier coverage in [0, x/Ih,r]× [0, h] tends to e−x as h→ ∞.

For strips of length o(1/Ih,r), Theorem 4 implies that the probability of there being a
break is o(1). However, for this case the following much stronger result will be shown.

Theorem 5. If r ≥ 7 and h ≥ 1 then

P(Gh,r(0, ℓ) has no s-t path) ≤ (ℓ+ 5h)Ih,r.
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2 Heuristics

Before giving proofs and further results, we introduce some non-rigorous heuristics about
the types of component of Gh,r and their frequency. The purpose is to help provide some
intuitive explanation for our results. We generally assume r is large, so that in most areas
the graph Gh,r is highly connected. The main idea is the concept of “excluded area”, that
is that rare configurations can be described by the absence of sensors within some nice
region A. Outside A, the density of sensors will be assumed to be close to the expected
density, which will result in a high degree of connectivity in the graph Gh,r. As r gets
smaller, these approximations become less accurate. Indeed, for r < rc the graph breaks
up into small components and the heuristics described here become totally inapplicable.

Given a region A ⊆ Sh, the probability that it contains no sensors is e−|A|, where |A|
is the area of A. We consider the minimal regions A that can force a component, or a
break, under the assumptions that there is a reasonable density of sensors outside of A.
For example, an excluded r × h rectangle across the strip is very likely to cause a break
(see Figure 3). On either side of this rectangle, the components are very likely to be good
(for large r), but the region disconnects Gh,r. This region is the smallest such empty region
that results in a break, so we might expect most breaks to be approximately rectangular,
and the frequency of breaks Ih,r to be about e−hr. (More precisely he−hr, since such a
rectangle can be placed after any sensor, and there are about h sensors per unit distance
along the strip.) Small components can form near the boundary of Sh with an excluded
area of 1

2
πr2, or in the interior of Sh with excluded area πr2. Hence these are likely to

occur with frequencies about e−πr
2/2 and e−πr

2
respectively. Note that if h < π

2
r, then

breaks should be more common than these small components, and so most components
are likely to be good. On the other hand, if h > π

2
r, then most components are likely to

be small (bad) components that do not form breaks.
Compound breaks (breaks containing homotopically inequivalent separating paths)

need an excluded area of at least rh + (π
3
−

√
3
4
)r2 > rh (see fourth example in Figure 3),

so at first sight these seem far rarer than simple breaks. However, we need to take care of
combinatorial issues — how many ways such breaks can occur. It is possible for compound
breaks to be more common than simple breaks if h is extremely large, in particular if
1 ≪ r2 ≪ log h. This is because although we lose a factor of e−O(r2) in the frequency of
compound breaks due to the extra O(r2) excluded area, we gain a combinatorial factor of
order h due to the choice of the vertical position of the small component inside the break.
(The excluded area is still hr + O(r2) even if the small component is in the center of the
break.)

Although vertical excluded rectangles are the most obvious breaks, diagonal breaks
are also possible. If the top of the break is displaced by a distance d, the excluded area
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Figure 3: Minimal excluded areas for breaks, small components near the boundary and in
the interior, compound breaks, and diagonal breaks.

becomes r
√
h2 + d2 ≈ rh+ rd2

2h
. If rd2 ∼ h this does not impose a large penalty, so we may

expect breaks to often deviate by about O(
√

h/r) from vertical.
These heuristics tend to be good for large r, however, corrections are needed for the

effects of finite r. These corrections tend to make breaks more likely. Indeed, the main
difference between the e−hr heuristic and Theorem 2 is given by the ε(hr−1/3) factor, which
by Theorem 3 gives an extra positive Θ(hr−1/3) term in the exponent. Determining this
extra term is rather difficult; in fact we believe that this is the most important contribution
of this paper. This extra term arises as a trade off between combinatorial factors counting
the many different types of break one can have, versus the penalty one pays in extra
excluded area for non-rectangular breaks. Roughly speaking, one gains an exponential
factor per unit length (h) of the break due to the extra “entropy” allowed by making the
walls of the excluded area fluctuate. Increasing r reduces this effect as these walls cannot
curve so much without increasing the excluded area significantly.

3 Good components and crossing sensor-paths

Recall that a good component is a component of Gh,r that has sensors within distance
√
3
2
r

of both the top and bottom boundaries of the strip Sh = R× [0, h].
Define a crossing sensor-path to be a path from the bottom of Sh to the top of Sh

consisting of line segments, with the first line segment being a vertical line segment bv1
of length at most

√
3
2
r from some point b ∈ ∂S−

h to some sensor v1 of Gh,r. Then line
segments corresponding to a graph theoretic walk2 v1, . . . , vn through Gh,r, and finally a

vertical line segment vnt of length at most
√
3
2
r to a point t ∈ ∂S+

h (see Figure 4). Note that
a crossing sensor-path need not be a simple curve and there exists a crossing sensor-path
going though some sensor if and only if that sensor is contained in a good component.

2A walk through a graph is a sequence of vertices v1, . . . , vn such that each vivi+1 is an edge. We allow
both edges and vertices to be repeated.
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More generally, define a sensor-path to be a walk through Gh,r which may optionally

also include an initial and/or final vertical segment of length at most
√
3
2
r to the boundary

∂Sh of Sh. Sensor-paths can of course exist in any component of Gh,r.
Notice that the concepts of good components and sensor-paths are defined in terms of

the infinite graph Gh,r, and are not related to the particular interval [a, b] along the x-axis
that we are concerned with.

We should also note that from now on, when we refer to, for example, a point to the
right of a separating path or crossing sensor-path γ, we mean right in the topological sense
of belonging to the infinite component of Sh \ γ that is unbounded to the right. Hence
points to the left of such a path may in fact have a larger x-coordinate than another point
that is to the right of the same path. We now give some simple consequences of these
definitions.

Lemma 6. If C is a component of Gh,r and v is a sensor that lies within distance r
2
of

a sensor-path γC through C, then v ∈ C.

Proof. Let z be the closest point on γC to v, so ‖z− v‖ < r
2
. If z is on some edge vivi+1 of

γC then ‖vi− vi+1‖ < r, so either ‖z− vi‖ < r
2
or ‖z− vi+1‖ < r

2
. Thus either ‖v− vi‖ < r

or ‖v − vi+1‖ < r implying that v is adjacent to either vi or vi+1 in Gh,r, and so v ∈ C.
Now assume z lies on a vertical segment bv1, say, meeting ∂S−

h . If z = v1 we are done,
since then v is within distance r

2
of the sensor v1 ∈ C. Otherwise, the segment vz must be

horizontal and ‖v − v1‖2 = ‖v− z‖2 + ‖z − v1‖2 < ( r
2
)2 + (

√
3
2
r)2 = r2. Thus once again, v

is within distance r of a vertex of C, so v ∈ C.

Lemma 7. If C and C ′ are distinct components, then the minimum distance between any
two sensor-paths γC and γC′, through C and C ′ respectively, is at least r

2
.

Proof. Let z and z′ be the closest pair of points with z on γC and z′ on γC′, and assume
‖z−z′‖ < r

2
. Since the paths are piecewise linear, we may assume one of z and z′ (say z) is

a corner or an endpoint of its path. If z is a corner, then it is one of the vertices of C. But
then z ∈ C ′ by Lemma 6, a contradiction since C and C ′ are distinct components. Thus we
may assume z is either a top t or bottom b boundary point of Sh on γC, say z = b ∈ ∂S−

h .
But since z is the closest point on a vertical segment of γC to z′, and z′ ∈ Sh, z

′ must be a
bottom boundary point b′ of Sh on γC′. But then either v1 or v′1 must be within distance
r
2
of γC′ or γC respectively, where bv1 and b′v′1 are vertical segments of γC and γC′. Thus

either v1 ∈ C ′ or v′1 ∈ C, a contradiction.

By Lemma 7 we see that crossing sensor-paths of distinct components cannot intersect.
On the other hand, we can find a crossing sensor-path of a good component C that inter-
sects all other crossing sensor-paths of C (by, for example, having it pass through every
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vertex of C). Thus we can order the good components from left to right according to the
order of their crossing sensor-paths. Recall that a break is a gap between two consecutive
good components.

Lemma 8. Any separating path γ partitions the good components into those that lie to the
left of γ and those that lie to the right of γ, so in particular defines a break. Conversely,
for any break there exists such a separating path γ. Indeed, if the break occurs between
good components C and C ′ then we can choose γ to lie between every pair of crossing
sensor-paths γC and γC′ through C and C ′ respectively.

Proof. If some sensor x lies to the left of γ and some sensor y lies to the right of γ, then
the line segment xy meets γ at some point z, say. Since ‖x − z‖, ‖y − z‖ ≥ r

2
we have

‖x−y‖ ≥ r, and so x and y are not adjacent in Gh,r. Thus any separating path disconnects
Gh,r, and so defines a break. For the converse, suppose C is a good component. Define
SC := (

⋃

γC
γC) ∪ (

⋃

v∈C Dv) to be the closed region consisting of the union of all crossing
sensor-paths γC through C and the closures of the sensing regions of C. Note that SC
forms a connected subset of the plane. Indeed,

⋃

v∈C Dv is connected, and all crossing
sensor-paths γC meet this set. No sensor outside of C is within distance r

2
of any γC (by

Lemma 6) or within distance r of any sensor in C. Thus no sensor outside of C is within
distance r

2
of SC . Since each γC intersects both the top and bottom boundaries of Sh,

so does SC . Let γ be the rightmost boundary of SC in Sh, i.e., the intersection of SC
with the closure of the component of Sh \ SC that is unbounded to the right. Now γ is
a separating path (made up from line segments and arcs of circles), no part of which is
to the left of any γC . If C ′ is a good component that lies to the right of C and γC′ is a
crossing sensor-path through C ′, then no point of γC′ can lie to the left of γ, otherwise
some point of γC′ would be within distance r

2
of some sensor in C, contradicting Lemma 6,

or would meet some γC , contradicting Lemma 7. Thus γ lies between any pair of crossing
sensor-paths γC and γC′.

4 Widths of good components and breaks

Call a separating path good if it is as in Lemma 8, i.e., it does not cross any crossing
sensor-path.

For any good component C define x+C to be the smallest x-coordinate of any point
on any good separating path to the right of C. Similarly define x−C to be the largest x-
coordinate of any point on any good separating path to the left of C (see Figure 4). Define
the width of a good component C as x+C − x−C and define the width of a break between
consecutive good components C and C ′ as x−C′ − x+C .
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− xC

+b

v1

t

γC

Figure 4: Crossing sensor-path γC (solid path) and x±C . Crosses indicate the rightmost point
to the left of every γC , or leftmost point to the right of every γC that a good separating
path can pass through. Note that good separating paths cannot pass beneath v1.

Note that the width of a good component may be negative, as a good separating path to
the right of C may extend further to the left than the rightmost point of a good separating
path on the left of C. The width of a break, between C and C ′ say, is however always
positive. In fact this width is (almost surely) the maximum horizontal extent of a good
separating path γ between C and C ′. Indeed, if there were good separating paths meeting
(x+C , y

+
C) and (x−C′ , y

−
C′), say, but no good separating path meeting both, then there would

be a collection C ′′ of sensors whose combined sensing region
⋃

v∈C′′ Dv separates these two
points. But then there would be a good component between C and C ′.

Lemma 9. If γ is a separating path between good components C and C ′ that lies entirely
in [x, x′] × [0, h], then there is a good separating path between C and C ′ that also lies in
[x, x′]× [0, h]. Also, some point of γ lies in [x+C , x

−
C′ ]× [0, h].

Proof. Let γL be the good separating path constructed in Lemma 8 as the rightmost
boundary path of SC = (

⋃

γC
γC)∪ (

⋃

v∈C Dv), where Dv denotes the closure of the sensing

region Dv of v. The rightmost point (xL, yL) of γ
L lies on the boundary of some disk Dv,

v ∈ C. As γ must pass to the right of v and cannot approach within distance r
2
of v,

we must have x′ ≥ xL. Thus replacing γ by the rightmost boundary of γ ∪ γL results
in a separating path that does not cross any crossing sensor-path γC of C and still lies
in [x, x′] × [0, h]. Repeating this process using the good separating path γR which is the
leftmost boundary of SC′ = (

⋃

γC′
γC′) ∪ (

⋃

v∈C′ Dv) results in a good separating path in

[x, x′]× [0, h].
Now take [x, x′] minimal, so that [x, x′] is the projection onto the x-axis of γ. Then as

any good separating path lies in [x+C , x
−
C′ ]× [0, h], [x, x′] must intersect [x+C , x

−
C′], and so γ

contains a point in [x+C , x
−
C′ ]× [0, h].

As a consequence of Lemma 9, we see that Lemma 1 holds even if we insist on the
separating path being good.
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For all (fixed) h, r > 0, define the intensity Ih,r of breaks as the limit

Ih,r = lim
ℓ→∞

Nℓ

ℓ
,

where Nℓ is the number of breaks of Gh,r containing separating paths in [0, ℓ] × [0, h]. It
is easy to see that this limit exists. Indeed, translational invariance and long range inde-
pendence imply that horizontal translation is an ergodic transformation on the probability
space of this model. Thus almost surely, breaks (or any other event that can be defined
in a translational invariant manner) occur with a well defined and deterministic frequency
along the strip. In particular, Ih,r is almost surely well defined and constant. It is clear
that Ih,r is also equal to the intensity of good components (defined in any reasonable way).
Moreover, it makes sense to talk about widths of random good components and breaks.
For example, if W is the width of a random break then P(W > x) is almost surely equal to
the asymptotic proportion of breaks with width W > x, and is well defined for any x ∈ R.

We now prove bounds on the average widths of breaks and good components. We shall
need these to show that the average width of the breaks is relatively small compared with
the average width of the good components when h is large. This is false when r < rc,
and is the main reason for the lower bound r ≥ 7 assumed in our results. The bounds we
obtain are relatively crude, but will be sufficient for our purposes.

Lemma 10. Assume r ≥ 7. Then the average width of a break is at most

max{5h, 1/h+ 2h}.

Proof. We first deal with the case when h <
√
3
2
r. In this case every vertex is within

distance
√
3
2
r of both the top and the bottom of Sh, so in particular, every component is

good. Consider two points of the Poisson process, (x1, y1) and (x2, y2), that are consecutive
in the horizontal ordering of the points given by their x-coordinates. Counting breaks
is equivalent to counting such pairs that lie in distinct components of Gh,r. Let d =
max{y1, h − y1} and assume (xi, yi) lies in the component Ci, i = 1, 2. If d ≤ r

2
then

the sensing region of (x1, y1) covers the strip Sh up to x-coordinate x1 + ( r
2

4
− d2)1/2 ≥

x1+
r
2
−d ≥ x1+

r
2
−h. If d > r

2
then h > r

2
, but there is still a vertical crossing sensor-path

at x = x1. Thus in all cases x+C1
≥ x1 +

r
2
− h. Similarly x−C2

≤ x2 − r
2
+ h, so the width of

the break is at most (x2 − r
2
+ h)− (x1 +

r
2
−h) = (x2 − x1 − r) + 2h. Let Z = x2 −x1 − r.

If Z < 0 a break may or may not be formed, but if it is then its width is at most 2h. On
the other hand, if Z ≥ 0 then x2 − x1 ≥ r, so there is always a break and its width is at
most Z +2h. Conditioned on Z ≥ 0, Z is an exponential random variable with mean 1/h.
Thus the average width of a break is at most 1/h+ 2h conditioned on Z ≥ 0 and at most
2h otherwise. Thus the unconditioned average width of a break is also at most 1/h+ 2h.
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We may now assume that h ≥
√
3
2
r. We shall now bound the intensity of breaks with

large width. Tile Sh with a× b rectangles, where a and b are chosen so that

(i) h/b is an integer;

(ii) the diameter
√
a2 + b2 of these rectangles is r

2
;

(iii) the area ab of these rectangles is maximized subject to (i) and (ii).

For large h/r, the rectangles are approximately square with side length r/
√
8, however to

tile Sh we need h/b to be an integer, and this decreases the area ab slightly. It is easy to

see that for any h ≥
√
3
2
r,

h/b ≥ 3, a, b ∈
[

r√
12
, r√

6

]

, and ab ≥
√
2

12
r2. (2)

The smallest area ab occurs when h =
√
3
2
r, h/b = 3, and as one increases h, extreme values

of a and b occur when the aspect ratio of the rectangles is k : k + 1 for some k ≥ 3.
Fix one of these tiling rectangles R adjacent to ∂S−

h . We estimate the probability p
that there exists a good separating path γ of width at least w meeting R, with R being
the leftmost rectangle meeting both γ and ∂S−

h . Take the set of rectangles that intersect γ
and regard this set as the vertices of a graph G, rectangles being joined if they share a
common edge. Thus G is a subgraph of the square lattice. The rectangles of G cannot
contain any point of the Poisson process, since all the points of these rectangles lie within
r
2
of γ and γ is a separating path. Ignoring probability zero events, it is clear that we

can, without loss of generality, assume that γ goes through no corner of any rectangle, so
that G is a connected graph that joins R to ∂S+

h , and joins the leftmost rectangle to the
rightmost rectangle meeting γ. It is easy to see that one can take a connected subset G′ of
these rectangles containing exactly n = h/b + ⌊w/a⌋ rectangles, still meeting our original
rectangle R, although G′ may now fail to meet the top of Sh or the leftmost/rightmost
rectangles. For example, any spanning tree of G rooted at R contains at least h

b
−1 vertical

and at least ⌊w/a⌋ horizontal edges, and so G contains at least n vertices. Now repeatedly
prune leaves until G′ contains exactly n vertices. Is is well known that the number of
connected subgraphs of order n of a graph of maximum degree ∆ ≥ 3 containing a specified
vertex is at most (e(∆− 1))n−1, where e is Euler’s constant (see, for example, [5, problem
45]). Thus the number of such choices of the subgraph G′ of the square lattice rooted at
R is at most (3e)n−1. However, we can do a bit better. Using the results of Klarner and
Rivest [10] (equation (7) and the preceding discussion3) the number of connected subsets

3Although they prove a slightly sharper asymptotic bound on the number of these “lattice animals”, it
is not so obvious what their stronger upper bound is for fixed n. Hence we use this slightly weaker result.
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of size n of the square lattice up to translation is at most

∑

k

(

n
k,k+1,n−2k−1

)

2n−k−1 =
1

2

(

∑

k

(

n
k,k+1,n−2k−1

)

2n−k−1 +
∑

k

(

n
k+1,k,n−2k−1

)

2n−k−1

)

≤ 1

2

∑

i+j+ℓ=n

(

n
i,j,ℓ

)

2n−(i+j+1)/2

=
1

2
√
2
2n(1 + 1√

2
+ 1√

2
)n

<
1

2
(2 + 2

√
2)n.

As we shall use this repeatedly, we shall state it as a lemma.

Lemma 11. For all n ≥ 1, the number of equivalence classes of connected subsets of the
square lattice of size n up to translation is at most 1

2
µn, where µ = 2 + 2

√
2.

Since we assumed that R is the leftmost rectangle on the lowest level of this subset,
fixing R determines which translate of this set we have. Thus there are at most 1

2
µn

possible choices for G′, where µ = 2+2
√
2. These rectangles form an empty region of area

nab, and so the probability p that there exists such a separating path γ satisfies

p ≤ 1
2
µne−nab ≤ 1

2
(µe−ab)n ≤ 1

2
(µe−ab)h/b+w/a−1,

where we are using the fact that ⌊w/a⌋ ≥ w/a − 1 and µe−ab < 1. It is conceivable (if
rather implausible) that two breaks may give rise to the same graph G′. However, it is
clear that three breaks cannot all give rise to the same graph. Indeed, if γ, γ′, γ′′ are good
separating paths giving rise to three successive breaks, then there are crossing sensor-paths
γC and γC′ corresponding to good components C and C ′ such that γ < γC < γ′ < γC′ < γ′′

in the left-right ordering of these paths (none of these paths cross). Since no point of γC is
within r

2
of any point of γC′, it follows that no point of γ is within distance r

2
of any point

of γ′′, and thus the sets of rectangles these paths pass through are disjoint. Consequently,
the intensity Ih,r(w) of breaks of width at least w can be bounded above by 2p/a, that is

Ih,r(w) ≤ 1
a
(µe−ab)h/b+w/a−1.

Now we need a lower bound on the total intensity of breaks. Consider a vertical strip
of rectangles of the tiling, each containing at least one point of P. The vertices in these
rectangles will form (part of) a good component. If the r × h rectangle immediately to
the right of this strip is empty, it will certainly force a break. The probability of this
occurrence is

(1− e−ab)h/be−hr,
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so the intensity Ih,r of breaks can be bounded below by

Ih,r ≥ 1
a
(1− e−ab)h/be−hr. (3)

Hence, if W is the (positive-valued) random variable expressing the width of a break and
w ≥ a, then

P(W ≥ w) =
Ih,r(w)

Ih,r

≤ (µe−ab)h/b+w/a−1(1− e−ab)−h/behr

≤ ehr
( µe−ab

1− e−ab

)h/b+(w−a)/a

= e(r−κa)h−κb(w−a) (4)

where

κ := − 1

ab
log

( µe−ab

1− e−ab

)

= 1− 1

ab
log

( µ

1− e−ab

)

≥ 0.72. (5)

The last inequality here follows from the fact that µ = 2 + 2
√
2 and, by (2), ab ≥

√
2

12
r2 ≥

5.77 as r ≥ 7. Now, for all x ≥ a we have by (4)

E(W ) ≤ x+

∫ ∞

x

P(W ≥ w) dw ≤ x+ 1
κb
e(r−κa)h−κb(x−a).

To minimize the right hand side, we set x = a+ (r−κa)h
κb

≥ a, at which point the exponent
in the second term is 0. Hence

E(W ) ≤ a+
(r − κa)h

κb
+

1

κb
=

r

κb
h +

κab− κah + 1

κb
.

Now h/b ≥ 3 and κab ≥ (0.72)(5.77) > 1, so κab−κah+1 ≤ −2κab+1 < 0. Also, by (2),
b ≥ r/

√
12, so

E(W ) ≤ (
√
12/κ)h ≤ 5h.

Lemma 12. Assume r ≥ 7. Then the proportion of good components with width less than
w ≥ 0 is at most

(w + cW )e−h/3,

where cW is some absolute constant.

14



Proof. As in the proof of Lemma 10, we consider the case h <
√
3
2
r first. In this case all

components are good. The width of a good component is at least as large as the horizontal
distance between its leftmost and rightmost points as we can take vertical crossing sensor-
paths through these points and no good separating path can cross these. Any two points
in Sh within horizontal distance 3 < r

2
are within distance r of each other, and so are in

the same component. Thus we can stochastically bound from below the width of a good
component by a random variable X =

∑T−1
i=1 Xi, where Xi are i.i.d. exponential random

variables of mean 1/h giving the horizontal distance between consecutive sensors, and
T = min{i : Xi ≥ 3}. Consider Ee−αX for α > 0. Conditioning on the value of X1 we
obtain

E(e−αX) = E
(

1{X1≥3} + e−α(X1+X′)1{X1<3}
)

= P(X1 ≥ 3) +

∫ 3

0

E(e−α(z+X
′))he−hz dz

= e−3h + E(e−αX
′

)

∫ 3

0

he−(h+α)zdz

≤ e−3h + E(e−αX
′

) h
h+α

,

where X ′ =
∑T ′−1

i=2 Xi, T
′ = min{i > 1 : Xi ≥ 3}, has the same distribution as X . Since

e−αX is bounded,
E(e−αX) ≤ h+α

α
e−3h,

so
P(X < w) ≤ E(eαw−αX) ≤ h+α

α
eαwe−3h.

Setting α = 1/w gives P(X < w) ≤ (wh+ 1)e1−3h. But he1−h ≤ 1 for all h, so

P(X < w) ≤ we−2h + ee−3h ≤ (w + cW )e−h/3

(with room to spare).

Turning to the heart of the proof, we now assume h ≥
√
3
2
r. For each good component C

we shall define a “leftmost” crossing sensor-path γLC through C. Given any good separating
path γ to the left of C, we “explore” the Poisson process P to the right of γ in order to
find γLC . Let U be the set of points u ∈ Sh that are at distance at least (

√
3 − 1) r

2
from

the boundary of Sh, are to the right of γ, and such that Du = {x : ‖x − u‖ < r
2
} does

not contain any vertex of P. Let U0 be the component of U (as a subset of R2) that is
connected to γ. Note that one can determine U0 by examining just the union of the regions
Du with u ∈ U0 (not just u ∈ U). Indeed, one can imagine the points of P as pegs, and
Du a disk that can be moved around as long as it is not obstructed by these pegs, and
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does not get too close to ∂Sh. Then U0 is the region that the center u is allowed to trace
out. Let S =

⋃

u∈U0
Du, then the rightmost boundary of S consists of a sequence of arcs of

circles, these circles joining points of P or ∂Sh. The points of P determining this boundary
form the path γLC (see Figure 5). Indeed, each such point must be strictly within r of the

next one, or within
√
3
2
r of the boundary of Sh. Thus they form a crossing sensor-path.

Conversely, given any crossing sensor-path γC, U0 must lie to the left of γC as the center
u of the disk Du cannot cross an edge between two vertices of γC and cannot cross the
vertical segments of γC joining it to the boundary of Sh. This justifies our description of γLC
as the “leftmost” crossing sensor-path, although it is possible that γLC contains redundant
vertices that lie to the right of some shorter γC . It is also possible that γCL fails to contain
the leftmost vertex of C in the case when this vertex is close to ∂Sh. Note also that some
vertices of γLC may lie in the interior of S (see Figure 5).

Since there are good separating paths to the left of C that go through any given point
of U0, the region S (and hence γLC) lies entirely to the left of the vertical line x = x−C + r

2
.

S
x

y

γ
γ

C
L

Figure 5: Leftmost crossing sensor-path γLC of good component C. Region to the right is
“unexplored”. Dotted line is a separating path to the left of C. Note that x lies in the
interior of S, and y could be removed to form a shorter path to the left of γLC. Also, near
the top of γLC there is a region to the left of γLC that is not in S. This could potentially
contain some vertices of C, and even the leftmost vertex of C.

We now aim to bound the width of the good component conditioned on particular
values of the sets S and P ∩ S (and hence also on γLC). It is important in what follows
that we have not conditioned on anything to the right of S. Tile the strip Sh with a × b
rectangles as in the proof of Lemma 10. For definiteness, align the rectangles horizontally
so that the line x = x−C + r

2
lies on a vertical boundary between two rectangles. Recall that

S lies entirely to the left of this line.
We now bound the probability that the width W of C is less than w in two stages.

First we bound the probability that r
2
≤ W < w. Consider a good separating path γ to

the right of C that meets the line x = x+C and mark all the rectangles that intersect γ.
Then no marked rectangle contains a sensor. If W ≥ r

2
then x+C ≥ x−C + r

2
, so γ must stay
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to the right of the line x = x−C + r
2
, and thus none of the marked rectangles intersect the

region S. Also, at least one of the marked rectangles lies in the column L of rectangles
intersecting the line x = x+C .

As in the proof of Lemma 10, we take the connected subgraph G of marked rectangles,
so that G joins the top to the bottom of Sh, consists entirely of empty rectangles, and also
intersects L. We bound the probability that any such graph G exists meeting L (ignoring
the requirement that L is in fact the leftmost column intersecting G). Let R be the
leftmost rectangle of G that meets the bottom boundary of Sh. Suppose R is horizontally
k rectangles to the right of L (or −k rectangles to the left of L). Then there are at least
h/b + |k| rectangles in G. Moreover, R is uniquely determined by k and L. All these
rectangles are empty, and are in regions not yet examined when constructing γLC. Thus,
by Lemma 11, we can bound the probability that such a γ exists with a given choice of R
by

∑

n≥h/b+|k|

1
2
µne−nab = 1

2
(µe−ab)h/b+|k|/(1− µe−ab),

where µ = 2 + 2
√
2. Summing over k ∈ Z, we have a bound of

p0 =
1
2
(µe−ab)h/b/(1− µe−ab)3 ≤ 1

2

(

µe−ab

1−µe−ab

)h/b

on the probability that any γ exists intersecting L. (Here we have used
∑

x|k| = 1+ 2x+
2x2 + · · · ≤ 1/(1− x)2 and h/b ≥ 3 from (2).) As in the proof of Lemma 10, we can write
this last expression as 1

2
e−κah, where κ ≥ 0.72 by (5). But κa ≥ κ r√

12
≥ 1, so

p0 ≤ e−h. (6)

As L contains the line x = x+C and x−C + r
2
≤ x+C < x−C + w, there are at most ⌈(w − r

2
)/a⌉

choices for the column L and so

P( r
2
≤W < w) ≤ ⌈(w − r

2
)/a⌉p0 ≤ we−h/3, (7)

where we have used the facts (from (2)) that r
2
≥ a and a ≥ r√

12
≥ 1.

Now we consider the probability that W < r
2
. Unfortunately, in this case it is possible

for some of the rectangles of G to intersect the set S, which we have already conditioned
on. Indeed, if we are not careful, almost all of G may be covered by S. Dealing with this
case is therefore significantly more complicated.

If W < r
2
, the separating path γ must pass to the left of x = x−C + r

2
(as it meets

x = x+C and x+C −x−C = W < r
2
) and also to the right of x = x−C (as it is to the right of γLC).

Inductively add to G any rectangles adjacent to G and (topologically) to the right of G
that contain no point of P, making G a maximal connected set of empty rectangles each
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of which either intersects γ or is to the right of γ. If one can then remove rectangles from
G that intersect S and still connect the top and bottom of Sh, then do this. We may have
removed all rectangles intersecting x = x+C in this process, but at least one of the remaining
rectangles must be adjacent to a rectangle that is to the left of x = x−C + r

2
, either because

it is adjacent to a rectangle meeting S that was removed, or because no rectangles were
removed and γ passes to the left of x = x−C + r

2
. In particular, in the case when G now

does not meet S, the remaining set of rectangles meets one of three columns L, the one
meeting x = x−C , x = x−C +a, or x = x−C +2a > x−C + r

2
. Thus we can bound the probability

that such a G exists by 3p0 where p0 is as above.
If every crossing path in G meets S, then by removing rectangles if necessary, we may

assume G is a path from the bottom to the top of Sh. By taking G to be the shortest such
path, we may assume that only one of our rectangles is adjacent to ∂S−

h , and only one of
our rectangles is adjacent to ∂S+

h . By assumption, G still meets S.
If a large portion of G is covered by S then we will have difficulty proving a sufficiently

strong bound on the probability of the existence of γ. Thus we need to add some extra
area that we know to be devoid of sensors. Let B be the union of the rectangles of G and
let T be the region topologically to the right of G (and hence to the right of γ) that lies
within distance r of some vertex of γLC. Then we know that T contains no sensors, as any
such sensor would be to the right of γ but joined to the component C. Thus B∪T contains
no sensors and (B ∪ T ) \ S has not been examined. There are at most 3n−3 possible paths
G of length n starting at a fixed rectangle R as there are at most 3 choices at each of
n− 1 steps, but the first and last steps go in a known direction. Thus we can bound the
probability that C is of width ≤ r

2
by

p1 = 3p0 +
∑

n≥h/b
(2 + 2(n− h/b))3n−3 sup

|G|=n
e−|(B∪T )\S|.

Here we have included 3p0 to take into account the case when we could have removed
rectangles to obtain a configuration that avoids S, together with 2 + 2(n− h/b) times the
probability of a path from a fixed R crossing Sh. The factor of 2 + 2(n− h/b) counts the
possible choices of R, given that the path can make at most n− h/b horizontal steps, and
must intersect one of the two columns intersecting x = x−C or x = x−C + a if it is to meet S
(which is to the left of x = x−C + r

2
< x−C + 2a) and also pass to the right of γLC (and hence

to the right of x = x−C).
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Using (6), and the bound (8) proved below in Lemma 13, we have

p1 ≤ 3p0 +
∑

n≥h/b
2(1 + (n− h/b))3n−3e−(πr2/96)max{n−h/b−4,0}−(rb/(4

√
3))(h/b−1)

≤ 3e−h + 3h/b−3e−(rb/(4
√
3))(h/b−1)

∞
∑

i=0

2(1 + i)3ie−(πr2/96)max{i−4,0}.

Now r ≥ 7, so 3e−πr
2/96 < 0.7 < 1. Thus the last sum above converges and is bounded by

an absolute constant c > 0. Also, r ≥ 4
√
3, so

p1 ≤ 3e−h + 3h/b−3e−b(h/b−1)c = 3e−h + 3−2ce−(2b/3−log(3))(h/b−1)+b/3−h/3.

Now b ≥ r/
√
12 ≥ 2, so 2b/3− log(3) ≥ 4/3− log(3) > 0. Thus we can replace h/b by its

smallest value h/b = 3 to get

p1 ≤ 3e−h + c3−2e−2(2b/3−log 3)+b/3−h/3 ≤ 3e−h + ce−be−h/3.

But b ≥ 2 and h ≥
√
3
2
r ≥ 5, so

P(W < r
2
) ≤ p1 ≤ (3e−10/3 + ce−2)e−h/3 = cWe

−h/3.

The result then follows on adding (7).

Lemma 13. Let G, B, and T be as in the proof of Lemma 12. Then

|(B ∪ T ) \ S| ≥ πr2

96
max{n− h

b
− 4, 0}+ rb

4
√
3
(h
b
− 1), (8)

where n is the number of rectangles in G.

Proof. Recall that G is a minimal path of empty rectangles joining ∂S−
h to ∂S+

h , B is the
union of these rectangles, and T is the region topologically to the right of B that is within
distance r of some vertex of γLC .

We first show that any point P topologically to the right of B ∪ T that is not in the
bottom or top row of rectangles must be at least distance c := r/

√
12 from S. Note that

c ≤ a, b by (2). Any point on the right boundary of S is either on an arc of a circle between
two sensors of γLC , or on an arc of a circle joining a sensor to the boundary of Sh. In both
cases one can check using simple geometry that P is at distance at least c from S (see
Figure 6). In the case when the closest point on ∂S to P is on an arc joining two vertices
vi and vi+1 of γLC, the minimum distance of P from S is at least

x :=
√
3
2
r − r

2
≥ r√

12
= c.
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Figure 6: Left: Points P at distance at least r from any vertex of γLC are at horizontal
distance z ≥ c

2
from S, and if P is at least b from ∂Sh then it is also at distance at least

min{x, y} ≥ c from S. Right: Horizontal line through Z that approaches within distance
t of Q intersects (B ∪ T ) \ S in an interval of length at least 2(c2 − t2)1/2.

The worst case however is near the boundary when the closest point to P on ∂S is on an
arc meeting ∂Sh. In this case P could be within distance

y :=
(

r2 − (
√
3
2
r − b)2 + (

√
3
2
r − r

2
− b)2

)1/2 − r
2
≥ r√

12
= c

of S. If P is in the top or bottom rows of rectangles it can be closer to S, however in all
cases it must be at least a horizontal distance of

z := r
2
−

(

r2

4
− (

√
3
2
r − r

2
)2
)1/2 ≥ r

2
√
12

= c
2

from S. It is also a vertical distance of at least c from S (since it is not vertically above or
below the arc of ∂S adjacent to the corresponding boundary of Sh).

We now estimate the area |(B ∪ T ) \ S| in two ways. First we estimate the area in a
row of rectangles, and add up the contributions from the h/b rows, then we estimate by
columns. Averaging these two estimates will then give the result.

First fix a horizontal row of rectangles. We call a rectangle R in this row right-facing
if R lies in G, the rectangle to the right of R does not lie in G, and the rectangle to the
right of R is in the component (topologically) to the right of the path G of rectangles. We
call a rectangle L in this row left-facing if L lies in G, the rectangle to the left of L does
not lie in G, but the rectangle to the left of L is in the component to the right of G. (This
can occur if the path of rectangles G loops round and travels downwards across this row,
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see Figure 6.) Note that some rectangles of G may be neither left nor right-facing, but
no rectangle can be both as the path G is of minimal length. Since the path begins at
the bottom of Sh and ends at the top, there will be one more right-facing than left-facing
rectangle in this row. Consider the rightmost rectangle R of G in this row. Clearly it is
right-facing. The right boundary of the excluded area T is at horizontal distance at least
c from S (c/2 if the row is adjacent to ∂Sh). Thus any horizontal line y = y0 intersects
(B ∪ T ) \ S in an interval of length at least min{a, c} = c (or min{a, c/2} = c/2) to the
right of the left boundary of R. Integrating over y gives a contribution of bc (or bc/2) for
this rectangle to the area in (B ∪ T ) \ S that lies either in, or to the right, of R. The
remaining left and right-facing rectangles can be paired up, with a right-facing rectangle
R followed by some rectangles not in G, followed by a left-facing rectangle L. Note that
rows adjacent to the boundary of Sh contain only a single right-facing rectangle, so we may
assume that the row is not adjacent to ∂Sh. Let Z be the rectangular region consisting of
R, L, and the rectangles between R and L on this row (see Figure 6). As the path G is
minimal, not all of Z lies in B ∪ T . (Otherwise adding Z to B and cutting off the “loop”
between R and L would shorten the path of rectangles.) Let Q be the region in Z that
does not lie in B ∪ T . Then Q is at distance at least c from S. Consider the intersection I
of a horizontal line y = y0 with Z \ (Q ∪ S) = ((B ∪ T ) \ S) ∩ Z. If the line y = y0 meets
Q, then there is an interval of length at least min{a, c} = c in I to the left of Q, and an
interval of length at least min{a, c} = c in I to the right of Q that does not meet S. If the
line y = y0 passes within distance t of Q, then there is an interval of length 2(c2− t2)1/2 in
I all of whose points are within distance c of Q and so does not meet S. Integrating over y
thus gives an area in ((B ∪ T ) \S)∩Z of at least πc2/2, the minimum area of intersection
with Z of the disk of radius c about a point in Z \ (R∪L). Thus, summing over rows, we
have

|(B ∪ T ) \ S| ≥ (h
b
− 2)bc+ 2 bc

2
+ 1

2
(nh − h

b
)πc

2

2
, (9)

where nh is the total number of left- or right-facing rectangles. A similar calculation can
be performed for columns of rectangles, giving

|(B ∪ T ) \ S| ≥ 1
2
max{nv − 4, 0}πc2

2
, (10)

where nv is the total number of up- or down-facing rectangles. Here pairs of up- and
downward facing rectangles give a contribution of at least πc2

2
. Most unpaired “outward

facing” rectangles R′ contribute at least πc2

4
. Indeed, we can use the same argument as

for paired rectangles, but limit the integration to the side of the region Q that faces the
rectangle. There is however one case in which this argument can fail. Although rectangles
adjacent to ∂Sh are never outward-facing, rectangles on the second row from the top or
bottom of Sh can be. In this case, the adjacent rectangle R′′ to R′ borders ∂Sh, and so
points in Q = R′ \ T may not be at distance at least c from S. This only affects the
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argument if R′ is within horizontal distance r
2
of the vertical segments of γC joined to ∂S±

h

as it is only in this case does a part of S within distance c of Q meet the vertical column
through R′. However, the right hand side of B is to the right of γC , and 2a > r

2
, so this can

affect at most two rectangles R′ near ∂S−
h and two rectangles R′ near ∂S+

h . Excluding these

four possible rectangles, we have a total contribution at of least (nv − 4)πc
2

4
as required.

As we travel along the path G, nv + nh counts the number of segments of the right
boundary of B. Thus each counterclockwise turn adds 2 to nv + nh, and each clockwise
turn adds 0 to nv + nh. Each straight edge adds 1, so since there are as many clockwise
as counterclockwise turns we have nv + nh = n, the total number of rectangles. Thus by
averaging (9) and (10) we get

|(B ∪ T ) \ S| ≥ πc2

8
max{n− h

b
− 4, 0}+ bc

2
(h
b
− 1).

The result follows as c = r/
√
12.

5 The distribution of breaks

To show that breaks have an approximately Poisson distribution, we use the Stein-Chen
method, a particularly convenient form of which can be found in [1]. The following theorem
is immediate consequence of Theorem 1 of [1].

Theorem 14. Let {XI : I ∈ I} be a collection of Bernoulli random variables indexed by
a countable collection of subsets I of some ground set. Suppose that

∑

I E(XI) = λ, and
for each I, XI is independent of {XJ : I ∩ J = ∅}. Let b1 =

∑

I,J : I∩J 6=∅ E(XI)E(XJ),
b2 =

∑

I,J : I∩J 6=∅, I 6=J E(XIXJ), and write X =
∑

I XI . Then for all k,

|P(X = k)− e−λλk/k! | ≤ b1 + b2.

Theorem 1 in [1] includes another term b3 that bounds dependency when I ∩J = ∅, but in
our case b3 = 0. Also, the sums in the definition of b1 and b2 are over ordered pairs (I, J).

Proof of Theorem 4. Let Wg be a random variable giving the width of a good component,
and Wb be a random variable giving the width of the subsequent break. Then Wb ≥ 0,
Wg +Wb ≥ 0, and

E(Wg +Wb)Ih,r = 1.

By Lemma 12, E(Wg) grows exponentially with h, while by Lemma 10, E(Wb) grows at
most linearly with h. Thus E(Wb)/E(Wg +Wb) → 0, and so E(Wb)Ih,r → 0 as h → ∞.
Set

ℓ = x/Ih,r = xE(Wg +Wb),
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so that ℓ→ ∞ as h→ ∞.
Let I ⊆ [0, ℓ] be a half-open interval with integer endpoints and length |I| > r, say

I = [p, q) with q − p > r, p, q ∈ Z. We denote by I the set of such intervals, and
given I = [p, q) ∈ I write I ′ = [p + r

2
, q − r

2
]. Define BI to be the event that there are

two crossing sensor-paths, γ1 and γ2, that lie in I ′ × [0, h], and a separating path lies in
I ′ × [0, h] between γ1 and γ2 (so γ1 and γ2 go through distinct good components). Clearly
the event BI depends only on the Poisson process in I× [0, h]. Now let XI be the indicator
function of the event that BI holds, but that BJ does not hold for any proper subinterval
J of I with J ∈ I. Clearly XI also depends only on the Poisson process in I × [0, h]
and if XI = 1 then BI holds, so there is a break. Moreover this break has break interval
[x+C , x

−
C′] ⊆ I ′ ⊆ I as no good separating path corresponding to this break can cross the

crossing sensor-paths γ1 and γ2 in I ′ × [0, h].
From the construction of the leftmost crossing sensor-path in Lemma 12, there is always

a crossing sensor-path through a good component C that lies entirely to the left of x−C + r
2
.

Similarly, there is a crossing sensor-path entirely to the right of x+C − r
2
. Thus, every break

interval [x+C , x
−
C′ ] that is a subset of [r, ℓ− r] results in an interval I with XI = 1. Indeed,

we have
I ⊆ [⌊x+C − r⌋, ⌈x−C′ + r⌉), (11)

so the width of I is at most 2r + 2 more than the width of the break it contains.
If there are two breaks resulting in the event BI holding, then there must be distinct

proper subintervals J1, J2 ⊂ I, J1, J2 ∈ I, such that BJ1 and BJ2 hold. This is because
there would be three crossing sensor-paths, γ1, γ2, γ3, in I

′ × [0, h] corresponding to three
distinct good components. But these would have to be separated by a distance of at least
r
2
> 3 from each other. Hence BJ would hold with J = [p, q − 3) and with J = [p + 3, q).

Thus each I withXI = 1 corresponds to a single break. Conversely, each break can give rise
to only one minimal interval I ∈ I with XI = 1. Hence if no break interval intersects either
[0, r] or [ℓ−r, ℓ], then X =

∑

I∈I XI exactly counts the number of breaks in Gh,r(0, x/Ih,r),
and is also the number of coordinates x+C that lie in [0, ℓ]. The probability that X is not
equal to the number of breaks in Gh,r(0, x/Ih,r) is at most the probability that a break
intersects either [0, r] or [ℓ−r, ℓ]. But the probability that a break intersects [0, r]∪ [ℓ−r, ℓ]
is the probability that the break starts in [−Wb, r]∪ [ℓ− r−Wb, ℓ], where Wb is its width.
By translational invariance, this probability is is at most

b0 := 2(E(Wb) + r)Ih,r ≤ (10h+ 2r)Ih,r

by Lemma 10 when h ≥ 1. But Ih,r tends to 0 exponentially fast with h (by Lemma 12).
Thus b0 → 0, and so E(X) → x, as h→ ∞.

From the definition of XI it is clear that XI is independent of all XJ with I ∩ J = ∅.
If I ∩ J 6= ∅, I 6= J , and XIXJ = 1, then by (11) we have ⌊x+C − r⌋ < ⌈x−C + r⌉ for any
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good component C between the breaks corresponding to I and J , and hence all these good
components must have width

x+C − x−C ≤ ⌊x+C − r⌋ − ⌈x−C + r⌉+ 2r + 2 ≤ 2r + 1.

In particular, one of the two good components adjacent to the break given by I ∈ I
must have width at most 2r + 1. Thus, by Lemma 12, the expected number of I’s such
that XIXJ = 1 for some J 6= I, I ∩ J 6= ∅, is at most 2(2r + 1 + cW )e−h/3ℓIh,r =
2(2r + 1 + cW )e−h/3x. Let I = [p, q) ∈ I and suppose there is such a J . There must be a
crossing sensor-path γC in I × [0, h] intersecting [q− r

2
− 1, q]× [0, h] or else B[p,q−1) would

hold. Each J = [p′, q′) ∈ I with XJ = 1 corresponding to a break on the right of I must
contain a crossing sensor-path meeting [p′+ r

2
, p′+ r

2
+1]× [0, h], otherwise B[p′+1,q′) would

hold. As distinct J ’s give rise to distinct breaks, all but at most one of these crossing
sensor-paths must lie to the right of γC. Thus if there are k intervals J intersecting I
and belonging to a break on the right of I, then there are k− 1 components with crossing
sensor-paths intersecting [q− r

2
−1, p′+ r

2
+1]×[0, h] ⊆ [q− r

2
−1, q+ r

2
]×[0, h]. However, we

cannot have more than O(h/r) crossing sensor-paths corresponding to distinct components
intersecting this region as each is at distance at least r

2
from the others. Thus for each I

with XI = 1 there can be at most O(h/r+1) J ’s such that I ∩J 6= ∅ and XIXJ = 1. Thus

b2 = O(h/r + 1)(2r + 1 + cW )e−h/3x,

and so b2 → 0 as h→ ∞.
Fixing I,

∑

J∩I 6=∅E(XJ) ≤
∑

k(|I|+k−1)P(X[0,k) = 1) as there are |I|+k−1 translates
of an interval of length k intersecting I and P(XI = 1) depends only on |I|. But ifX[0,k) = 1
then k ≤ Wb + 2r + 2 where Wb is the width of the break corresponding to this interval.
Thus

∑

J∩I 6=∅
E(XJ ) ≤ (|I|+ E(Wb) + 2r + 1)Ih,r.

Now |I| ≤W ′
b + 2r + 2, where W ′

b is the width of the break corresponding to I. Hence

b1 ≤ (E(W ′
b) + E(Wb) + 4r + 3)ℓI2h,r ≤ (10h+ 4r + 3)xIh,r,

where the second inequality follows from Lemma 10 and the fact that we may assume
h ≥ 1. Since Ih,r decreases exponentially with h, b1 → 0 as h→ ∞.

Applying Theorem 14 we deduce that
∣

∣P(X = k)− e−E(X)(E(X))k/k!
∣

∣ ≤ b1 + b2,

and hence
∣

∣P(#breaks = k)− e−E(X)(E(X))k/k!
∣

∣ ≤ b0 + b1 + b2.

The result follows as E(X) → x and b0, b1, b2 → 0 as h→ ∞.
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For practical purposes one would aim to show that the existence of any break occurring
in a short strip is unlikely. In this case we recall Theorem 5.

Theorem 5. If r ≥ 7 and h ≥ 1 then

P(Gh,r(0, ℓ) has no s-t path) ≤ (ℓ+ 5h)Ih,r.

Proof. If Gh,r(0, ℓ) has no s-t path then, by Lemma 1 and Lemma 9, a good separating
path exists in [0, ℓ] × [0, h]. Thus [0, ℓ] must intersect one of the intervals [x+Ci

, x−Ci+1
]

corresponding to the breaks in Gh,r. Equivalently, either x+Ci
∈ [0, ℓ], or 0 ∈ [x+Ci

, x−Ci+1
]

for some i, where Ci, i ∈ Z, are the good components ordered horizontally. The expected
number of i’s with the first property is ℓIh,r since the asymptotic density of points x+Ci

equals the density of breaks Ih,r. The expected number of i’s with the second property
is at most 5hIh,r since, by Lemma 10, the expected width of a break is at most 5h (for
h ≥ 1) and their density is Ih,r. Thus the probability that Gh,r(0, ℓ) is not s-t connected
is at most (ℓ+ 5h)Ih,r.

6 Small h and the function ε(z)

Having shown in Theorem 4 that breaks occur with an approximately Poisson distribution,
it remains to derive the break intensity. Once we have the break intensity, it is a simple
matter to either estimate or bound the probability that no breaks exist in a strip of given
length (which by Lemma 1 is equivalent to the strip being barrier covered) using either
Theorem 4 or Theorem 5.

The most interesting case is when h is larger than r, however, to estimate Ih,r for
large h, we shall reduce to the case of small h. Thus we shall need to study the small h
(h <

√
3
2
r) case in some detail first. We count the number of vertices that are the rightmost

point of some good component, since this is equivalent to counting good components, and
hence breaks.

For h <
√
3
2
r, all components are good, so the probability that a fixed sensor v is the

rightmost sensor of a good component is given by the probability that there is no sensor w
to the right of v that is adjacent in Gh,r to v, or to any sensor u to the left of v (as in this
case either u or w would be joined to v by Lemma 6 applied to the vertical crossing sensor-
path through v). To calculate this probability, fix v, and place sensors to the left of v in
Sh according to a Poisson point process. Let A be the region in Sh to the right of v that is
within distance r of v or any sensor to the left of v (see Figure 7). Then v is the rightmost
sensor of a component if and only if the region A is empty. Thus conditioned on the process
to the left of v, the probability that v is the rightmost sensor of a component is e−|A|. The
overall probability that we are interested in is just E(e−|A|), where the expectation is over
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the position of v and the state of the Poisson process to the left of v. The intensity of such
sensors, and hence of breaks, is then given by

Ih,r = hE(e−|A|), (12)

since the intensity of sensors v per unit length of the strip is just h. It remains to calculate
E(e−|A|).

The excluded area is the union of a number of disks of radius r. We first approximate
these areas by parabolic regions, replacing the disk (x−x0)2+(y−y0)2 < r2 about a sensor
(x0, y0) by the parabolic region x− x0 < r− (y − y0)

2/2r. We then estimate the excluded
area as |A| ≈ rh− |B|, where B is the shaded region in Figure 7 which lies to the right of
all these approximating parabolas and to the left of the vertical line which is at distance r
to the right of v. The advantage of this approximation is that the two parameters r and
h can be reduced to a single parameter z = hr−1/3, making the analysis of the function
ε(z) defined below much easier. Indeed, if we rescale the strip by a factor r1/3 along the
x-axis and by a factor r−1/3 along the y-axis, the density of the Poisson process and all
areas unchanged, but the parabolas are now of the form x = z0 − (y − y0)

2/2, where the
points (z0, y0) are the locations of the sensors, shifted a constant amount to the right so
that they lie on the vertices of the parabolas.

For convenience we now swap the x and y-coordinates. Then B is defined by placing a
Poisson point process with intensity 1 in the half infinite strip [0, z]× [0,∞) plus one more
point chosen uniformly at random on [0, z] × {0} and then taking the area below all the
parabolas y = y0 + (x− x0)

2/2, where (x0, y0) ranges over all of these points. Define ε(z)
by

ε(z) = z E(e|B|), (13)

so that
Ih,r ≈ r1/3ε(hr−1/3)e−hr. (14)

Note that taking a Poisson point process in [0, z]× [0,∞) and then adding one random
point in [0, z] × {0} is equivalent to taking a Poisson process in [0, z] × [0,∞) and then
shifting all these points down until the lowest point is on the x-axis. Let P be defined as
the set of these points.

It is clear that |B| ≤ z3/6, the worst case being when there is just one point in P that
is located at the origin. Thus ε(z) ≤ zez

3/6. We wish to improve this bound to eO(z) first,
before showing that ε(z) = eαz+β+o(1). Moreover, we wish to show that in (13), one can,
without too much error, restrict P so that the lowest parabola above any point (x0, 0) has
its vertex (i.e., its lowest point) not too far from the line x = x0. Note that the horizontal
distance to the vertex of one of the parabolas is just the slope of the parabola at that
point, so that this is equivalent to restricting the maximum slope of the upper boundary
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Figure 7: Approximating excluded disks by parabolas. The vertex v is the rightmost
vertex of the good component, and u is another vertex to the left of v. The excluded area
A consists of all points within the circles that lie to the right of v, so |A| ≈ hr − |B|. For
clarity, the picture is drawn with h > r. The diagram on the right is used in the proof of
Lemma 17.

of the region B. In doing so, we shall also bound the error introduced in (14) as a result of
approximating the excluded disks by parabolas. We now leave the task of estimating Ih,r
to Section 8. The rest of this section will be devoted to studying the function ε(z).

Lemma 15. Let s(B) be the maximum absolute value of the slope of the upper bound-
ary of B. Define εs(z) = z E(e|B|1s(B)≥s). Then there are absolute constants c1, c2 > 0

independent of z and s such that εs(z) ≤ ec1z−c2s
3
.

Note that ε(z) = ε0(z), so Lemma 15 implies that ε(z) ≤ ec1z.

Proof. First we note that εs(z) ≤ ε(z) ≤ zez
3/6 and s(B) ≤ z, so by choosing c1 sufficiently

large, and c2 sufficiently small, we may assume the result holds for z ≤ 1.
Now assume z > 1 and tile [0, z] × [0,∞] with rectangles of width α and height α2

2
.

Here we choose α = z/⌈z⌉ so that n = z/α = ⌈z⌉ is an integer and 1
2
≤ α ≤ 1. Let

ai, i = 0, . . . , n − 1, be the number of rectangles above the interval [iα, (i + 1)α] that
intersect B. In other words, we bound B by a step function which has height ai

α2

2
on the

interval [iα, (i + 1)α). Thus |B| ≤ α3

2

∑

i ai. Let bi, i = 0, . . . , n − 1, be defined as the
maximum of

ai − 2, ai±1 − 5, ai±2 − 10, . . . ai±k − 1− (k + 1)2, . . .

Then there can be no point of P in the lowest bi rectangles above [iα, (i + 1)α]. Indeed,
if say bi = ai+k − 1 − (k + 1)2 and there were a point (x0, y0) ∈ P with y0 ≤ bi

α2

2
and
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x0 ∈ [iα, (i+1)α], then any point (x, y) ∈ B with x ∈ [(i+ k)α, (i+1+ k)α] would satisfy

y ≤ y0 +
1
2
(x− x0)

2 ≤ bi
α2

2
+ (k + 1)2 α

2

2
≤ (ai+k − 1)α

2

2
.

contradicting the definition of ai+k as there should be no points in B ∩ [(i+ k)α, (i+ 1 +
k)α] × [0, (ai+k − 1)α

2

2
]. The probability of a configuration occurring with a particular

sequence (ai)i is thus at most exp(−α3

2

∑

i bi). Since |B| ≤ α3

2

∑

i ai, the contribution to

ε(z) from such configurations is at most z exp(α
3

2

∑

i(ai − bi)).
Let δi = ai − ai−1, i = 1, . . . , n − 1. Then the sequence (δi)i determines (ai)i up to

the addition of a constant. However, ai = 1 when the point of P on the x-axis lies in
[iα, (i+1)α). Thus the contribution to ε(z) from configurations with a fixed sequence (δi)i
is at most

nz exp
(α3

2

∑

i

(ai − bi)
)

and the differences ai− bi depend only the sequence (δi)i. Now bi ≥ max{ai− 2, ai±1− 5},
so ai− bi ≤ min{2, 5+ δi, 5− δi+1}, where we define δ0 = δn = 0 when i = 0 or n−1. Thus

ai − bi ≤ 1
2
min{5, 5 + δi}+ 1

2
min{5, 5− δi+1}

= 1
2
(5−max{−δi, 0}) + 1

2
(5−max{δi+1, 0})

= 5− 1
2
δ−i − 1

2
δ+i+1, (15)

where δ+i = max{δi, 0} and δ−i = max{−δi, 0}. Now |δi| = δ+i + δ−i , so

n−1
∑

i=0

(ai − bi) ≤ 5n− 1
2
(δ−0 + |δ1|+ · · ·+ |δn−1|+ δ+n ) = 5n− 1

2

n−1
∑

i=1

|δi|. (16)

Thus

nz exp
(α3

2

n−1
∑

i=0

(ai − bi)
)

≤ nze5nα
3/2

n−1
∏

i=1

e−|δi|α3/4.

Summing over all values of δ1, δ2, . . . δn−1 ∈ Z in turn gives

∑

(δi)

nz exp
(α3

2

∑

i

(ai − bi)
)

≤ nze5nα
3/2

( 2

1− e−α3/4
− 1

)n−1

≤ nzec3n, (17)

for some absolute constant c3 > 0. Substituting n = z/α and recalling that α ≥ 1
2
gives

ε(z) ≤ 2z2e2c3z. Thus the result for s = 0 (or even bounded s) follows.
Now suppose the upper boundary of B has maximum slope s = s(B) > 0 at the point

(x0 + s, y0 +
s2

2
), so that the slope is determined by the vertex (x0, y0) ∈ P. (The case
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when s(B) is the absolute value of the largest negative slope is similar.) Let i, j ∈ Z be
such that

x0 ∈ [iα, (i+ 1)α) and y0 ∈ [(j − 1)α
2

2
, j α

2

2
).

Then ai+k ≤ (k+1)2+j for all k ≥ 0. Now choose t ∈ Z so that x0+s ∈ [(i+t)α, (i+t+1)α).
Note that (t − 1)α ≤ s ≤ (t + 1)α. Then ai+t

α2

2
≥ y0 +

s2

2
≥ (j − 1 + (t − 1)2)α

2

2
. Hence

for 0 < k < t
bi+k ≥ (j − 1 + (t− 1)2)− 1− (t− k + 1)2.

Thus

ai+k − bi+k ≤ (k + 1)2 + j − (j − 1)− (t− 1)2 + 1 + (t− k + 1)2 = 4t + 3− 2k(t− k).

Since the maximum slope of the upper boundary of B is s ≤ (t+1)α, we have |δi| ≤ t+1
for all i, and so

ai+k − bi+k ≤ (5− 1
2
δ−i+k − 1

2
δ+i+k+1) + 5t− 2k(t− k).

Summing, and using (15) when j ≤ i or j ≥ i+ t, gives

n−1
∑

j=0

(aj − bj) ≤ 5n− 1
2

n−1
∑

j=1

|δj | −
t−1
∑

k=1

(2k(t− k)− 5t).

This last sum is Θ(t3) = Θ(s3), so summing over the (δi)i as in (17) now gives the
result for εs(z).

We observe that we only used the parabolic bound y0 + (x − x0)
2/2 on the upper

boundary of B when |x− x0| < 2α ≤ 2 for s = 0, or |x− x0| < s + 2α ≤ s + 2 for s > 0.
Clearly modifying the parabola slightly does not affect the proof of Lemma 15, so we can
generalize it to the following.

Lemma 16. Assume f : R× R → [0,∞] is such that f(x0, x0) = 0 and

∂

∂x
f(x, x0) = η(x, x0)(x− x0), 1 ≤ η(x, x0) ≤ K,

for all x and x0 with |x − x0| < s + 2. Then the conclusion of Lemma 15 also holds for
εf,s(z), where we define

εf,s(z) = zE(e|B|) (18)

as for εs(z), but with the curves y = y0 + f(x, x0) used instead of the parabolas y =
y0 + (x − x0)

2/2 in the definition of the region B. The constants c1 and c2 do however
depend on K.
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Proof. By the monotonicity of the expression for εf,s in terms of e|B|1s(B)≥s, it is enough
to prove the result when f(x, x0) = K(x − x0)

2/2 and the slope bound is replaced with
s(B) ≥ Ks. In this case the result follows from the proof of Lemma 15 by using K α2

2
for

the height of the rectangles instead of α2

2
.

To show that ε(z) is of the form eαz+β+o(1) we now show that ε(z1+z2) ≈ cε(z1)ε(z2) for
some constant c > 0. Let z = z1 + z2 and decompose the area B into two pieces, the part
above [0, z1] and the part above [z1, z1+z2]. If y1 (respectively y2) is the height of the lowest
vertex on the left (respectively right), then the set of vertices can be written as a union of
P1 + (0, y1) and P2 + (z1, y2), where P1 and P2 are corresponding configurations used in
the definition of ε(z1) and ε(z2). The area |B| can be calculated as |B1|+ |B2|+ |R| − |C|,
where B1 and B2 are the corresponding areas for P1 and P2, R is either [0, z1] × [0, y1]
or [z1, z1 + z2] × [0, y2] depending on whether y2 or y1 is zero, and C is the set of points
that are below all the parabolas on their own side, but above a parabola on the opposite
side (see Figure 7). Fix P1 and P2 and imagine sliding one of the regions [0, z1] × R or
[z1, z1 + z2] × R either up or down. Let t be the y-coordinate of the top left point of B2

minus the y-coordinate of the top right point of B1. We consider the region C = C(t) to
be a function of t. Note in particular that C(0) = ∅ and that C is to the right (respectively
left) of the vertical line x = z1 when t > 0 (respectively t < 0), and C intersects the
vertical line x = z1 in an interval of length exactly |t|.

Lemma 17.

ε(z1 + z2) = z1z2EP1EP2e
|B1|e|B2|

∫ ∞

−∞
e−|C(t)|dt, (19)

where EP1 and EP2 are expectations over the corresponding configurations and, as above,
t is the distance of the top left point of B2 over the top right point of B1.

Proof. The set P can be constructed with the correct distribution by setting P = (P1 +
(0, y1)) ∪ (P2 + (z1, y2)), where with probability z1/z, y1 = 0 and y2 has an exponential
distribution with mean 1/z2, while with probability z2/z, y2 = 0 and y1 has an exponential
distribution with mean 1/z1. Let t0 be the value of t when y1 = y2 = 0. Then recalling
that |B| = |B1|+ |B2|+ |R| − |C|,

ε(z1 + z2) = zEP1EP2e
|B1|+|B2|

(

z1
z

∫ ∞

0

eτz2−|C(t0+τ)|z2e
−τz2dτ +

z2
z

∫ ∞

0

eτz1−|C(t0−τ)|z1e
−τz1dτ

)

= z1z2EP1EP2e
|B1|e|B2|

∫ ∞

−∞
e−|C(t)|dt.

The area |C(t)| can perhaps be more easily visualized by translating the points (x, y)
down vertically to (x, y − (x − z1)

2/2). As each point in any vertical segment is shifted
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down by the same amount, the area |C(t)| remains constant. However, the parabolas used
to define the regions B, B1, B2, and C now become straight lines. The upper boundaries
of B, B1, B2 become polygonal paths that are concave down, and C becomes a polygonal
region. Lines bounding B1, B2, or B that slope upwards arise from points to the left of
x = z1, and lines that slope downwards arise from points to the right of x = z1. Indeed,
the parabola with vertex (z1 − s, y1) ∈ P is transformed into a line of slope s. Note that
the slopes of the upper boundaries of B, B1, and B2 at x = z1 are unaffected by this
transformation (see Figure 8).

Define

QP1,P2 =

∫ ∞

−∞
e−|C(t)| dt.

The next result shows that QP1,P2 can “almost” be factored as a function of P1 times a
function of P2. This will be the key step in the proof of Theorem 3.

Lemma 18. For any choice of P1, P ′
1, P2, P ′

2, we have

QP1,P2QP ′
1,P ′

2

QP1,P ′
2
QP ′

1,P2

≤ 8
√
2π

(

min{z1, z2}
)3/2

+ 16.

Proof. Write QL
P1,P2

(respectively QR
P1,P2

) for the integral of e−|C(t)| over t < 0 (respectively
t > 0), i.e., over t such that the region C(t) = CP1,P2(t) is to the left (respectively right) of
the line x = z1. Write P0

1 for the single point (z1, 0) and P0
2 for the single point (0, 0), so

that both represent a single point on the x-axis at the intersection of the two strips. For
t < 0 and any P2 we have

|CP1,P2(t)| ≤ |CP1,P0
2
(t)|.

Indeed, the lowest upper boundary of B to the left of x = z1 we can force by placing points
to the right of x = z1 and with a given value of t is obtained when we place points on
x = z1 as this has slope 0 while any point further to the right would give a boundary with
negative slope. Hence by integrating we have

QL
P1,P2

≥ QL
P1,P0

2
.

On the other hand, if R := CP1,P0
2
(t/2) is not a subset of C(t) = CP1,P2(t) (keeping the

vertical alignment of P1 fixed), then T := C(t) \R has no boundary determined by points
in P1 (see Figure 8). However, in this case, convexity of the boundary determined by P2

implies that |T | ≥ |S| where S = |CP0
1 ,P2

(−t/2)|. Hence if R 6⊆ C(t) then |C(t)| ≥ |T | ≥
|S|, while if R ⊆ C(t) then |C(t)| ≥ |R|. Hence

e−|CP1,P2
(t)| = e−|C(t)| ≤ e−|R| + e−|S| = e

−|C
P1,P

0
2
(t/2)|

+ e
−|C

P0
1
,P2

(−t/2)|
.
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Integrating from t = −∞ to t = 0, we deduce that

QL
P1,P2

≤ 2(QL
P1,P0

2
+QR

P0
1 ,P2

).

Hence, writing cL = QL
P1,P0

2
and cR = QR

P0
1 ,P2

, we have

cL ≤ QL
P1,P2

≤ 2(cL + cR),

and by symmetry
cR ≤ QR

P1,P2
≤ 2(cL + cR).

Now
QP1,P2 = QL

P1,P2
+QR

P1,P2
,

so
cL + cR ≤ QP1,P2 ≤ 4(cL + cR).

Thus the quotient in the statement of the lemma is at most

4(cL + cR)4(c
′
L + c′R)

(cL + c′R)(c
′
L + cR)

,

where c′L and c′R are defined using P ′
i instead of Pi. Without loss of generality we may

assume z1 ≤ z2 and c′L ≥ cL. Then

4(cL + cR)4(c
′
L + c′R)

(cL + c′R)(c
′
L + cR)

≤ 16
c′L + c′R
cL + c′R

≤ 16
c′L
cL

The smallest value of cL occurs when P1 = P0
1 as in this case |C(t)| is as large as

possible. Indeed, |C(t)| = |t|z1 as C(t) is of constant height |t| and width z1. Thus
cL =

∫∞
τ=0

e−τz1 dτ = 1/z1. The largest value of c
′
L occurs when P ′

1 = {(0, 0)} as this causes
the height of C(t) to decrease as rapidly as possible away from the line x = z1 and hence
minimizes the area |C(t)|. In this case the height of C(t) decreases linearly away from
x = z1 with slope z1 and so

|C(t)| =
{

|t|2/(2z1) if t ≤ z21 ;

(|t| − z21/2)z1 otherwise.

(The first expression occurring when the shifted C(t) is a triangular region and the second
when it forms a trapezoid that extends all the way to the line x = 0.) Hence in this case
we have

c′L =

∫ z21

0

e−t
2/(2z1)dt+

∫ ∞

z21

e−(t−z21/2)z1dt ≤
√

πz1/2 + 1/z1
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Thus
QP1,P2QP ′

1,P ′
2

QP1,P ′
2
QP ′

1,P2

≤ 16

√

πz1/2 + 1/z1
1/z1

= 8
√
2πz

3/2
1 + 16.

C

t

0

∂B2

∂B1

R

T

S

t

t/2

0

∂B2
0

∂B1
0

p q

Figure 8: |R| = |CP1,P0
2
(t/2)| and |T | ≥ |S| = |CP0

1 ,P2
(−t/2)|. Either R or T is contained

within C = C(t) = CP1,P2 depending on whether the intersection point p is to the right or
left of q. Note slopes of all lines from P1 are positive while slopes of all lines from P2 are
negative. Lines ∂B0

1 and ∂B0
2 defined by P0

1 and P0
2 are horizontal.

To derive Theorem 3 from Lemma 18, we require some results on finite real matrices,
which we shall now present.

Let A = (aij) be a square matrix with non-negative real entries. For any K ≥ 1, we
say A is K-nearly rank 1 if for all i, j, k, l,

aijakl ≤ Kailakj. (20)

Note that a matrix that is 1-nearly rank 1 is in fact of rank 1.

Lemma 19. If A is K-nearly rank 1 and B has non-negative entries, then the matrix
product AB (or BA) is K-nearly rank 1 (with the same value of K).

Proof. Writing A = (aij), B = (bij), and AB = (cij), we have

aijaklbjpblq ≤ Kailakjbjpblq.

Summing over j and l gives
cipckq ≤ Kciqckp

as required.
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The following lemma is a quantitative version of Perron’s Theorem on eigenvalues of
strictly positive matrices (see [8]).

Lemma 20. Suppose A is a square matrix with strictly positive entries which is K-nearly
rank 1. Then for any ε, 0 < ε < 1

2
, and any N ≥ 1 + K log(3K/ε), the matrix AN is

(1 + ε)-nearly rank 1.

Note that the bound on N is independent of the dimensions of the matrix A.

Proof. By Perron’s Theorem, there exists a real and strictly positive eigenvector v, Av =
λv, with λ the (unique and real) maximal eigenvalue. From (20), and writing A = (aij),

λaijvk =
∑

l

aijaklvl ≤
∑

l

Kailakjvl = Kλviakj.

Define uj for each j > 0 to be the maximal uj such that aij ≥ viuj for all i. Then for each
j there exists an k such that akj = vkuj. Thus λaijvk ≤ Kλvivkuj, and so aij ≤ Kviuj
for all i and j. Let B = (viuj). Then B is a rank 1 matrix that approximates A in the
sense that B ≤ A ≤ KB (inequality holding entry-wise). Now v is an eigenvector for B
with eigenvalue λ′ = uTv. But Bv ≤ Av ≤ KBv, so λ′ ≤ λ ≤ Kλ′. Now fix a basis vector
δk = (. . . , 0, 1, 0, . . . ) and consider ANδk. Write

ANδk = ((A− B) +B)N−1Aδk = (A−B)N−1Aδk + ckv = w + ckv,

where ck is some scalar. (For any vector x, M1M2M3 . . .MN−1x is proportional to v when
all the Mi ∈ {A − B,B} and at least one Mi = B.) We aim to show that w is small
compared with ckv. Now Aδk ≤ KBδk = Kukv, so

w = (A−B)N−1Aδk ≤ K(λ− λ′)N−1ukv.

But λ′ ≥ λ/K, so

K(λ− λ′)N−1 ≤ K(1− 1/K)N−1λN−1 ≤ Ke−(N−1)/KλN−1 ≤ ε′λN−1,

where ε′ = ε/3. Hence w ≤ ε′λN−1ukv. Now ANδk ≥ AN−1Bδk = λN−1ukv, so ckv =
ANδk − w ≥ (1− ε′)ANδk, and hence

ckv ≤ w + ckv = ANδk ≤ (1− ε′)−1ckv.

Thus vicj ≤ (AN)ij ≤ (1 − ε′)−1vicj. The result now follows since (AN )ij(A
N )kl and

(AN)il(A
N )kj both lie between vivkcjcl and (1− ε′)−2vivkcjcl, and (1− ε′)−2 ≤ 1 + ε.
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Proof of Theorem 3. Our aim is to use Lemma 17 to estimate ε(z) for large z by relating it
to the values of ε(z) for smaller z. To do this, we would like the integral, and in particular
C(t), in Lemma 17 to depend only on points close to common boundary of the two strips
[0, z1]× R and [z1, z1 + z2]× R. Fix z0 ≥ 4 and define f(x, x0) by

f(x, x0) =

{

(x− x0)
2/2, if (2⌊ x0

2z0
⌋ − 1)z0 ≤ x < (2⌊ x0

2z0
⌋+ 3)z0;

∞, otherwise.

Now define εf(z) = εf,0(z) as in Lemma 16. The rather bizarre definition of f is chosen so
that the upper boundary of B is genuinely independent of horizontally distant points, and it
will ensure that equation (24) below is an exact equality, rather than just an approximation.
Indeed, f is defined so that if x0 ∈ [2kz0, (2k + 2)z0) then f is a quadratic precisely when
x ∈ [(2k − 1)z0, (2k + 3)z0). In particular f(x, x0) = (x − x0)

2/2 for |x − x0| ≤ z0,
so the regions B used in the definition of εf(z) and ε(z) are the same unless there is a
point on the upper boundary of (either version of) B with slope at least z0. Moreover,
f(x, x0) ≥ (x− x0)

2/2 so εf(z) ≥ ε(z). Together with Lemma 16, we have

0 ≤ εf(z)− ε(z) ≤ εf,z0−2(z) ≤ ec1z−c2(z0−2)3 ≤ ec1z−c2z
3
0/8, (21)

where the last inequality follows from our assumption that z0 ≥ 4. Now assume that
z ≤ cz30 where c > 0 is chosen so that c < c2/(8(c1 + 1)) and hence c1z − c2z

3
0/8 <

c1z − (c1 + 1)z = −z. Since ε(z) ≥ z for all z ≥ 0 and ε(z) = εf(z) for 0 < z < 4 ≤ z0, we
have

1 ≤ εf(z)/ε(z) ≤ 1 + e−z for 0 < z ≤ cz30 . (22)

Divide [0, z] into three intervals, [0, 2z0], [2z0, z − 2z0], and [z − 2z0, z]. Let y1, y2, y3
be the height of the lowest point of P above each interval, so that min{y1, y2, y3} = 0, and
conditioned on yi = 0, the other yj are independent exponential random variables. Write
P = (P1 + (0, y1)) ∪ (P2 + (2z0, y2)) ∪ (P3 + (z − 2z0, y3)) as in the proof of Lemma 17.
Define for z ≥ 4z0 a function P (z) of a pair of distributions of points by

P
(z)
P1,P3

= z EP2,y1,y2,y3e
|B|,

where the upper boundary of B is defined using the function f . In other words, P
(z)
P1,P3

is
given by the same formula as for εf(z) except conditioned on P1 and P3. In particular

εf(z) = EP1EP3P
(z)
P1,P3

. (23)

Now consider the interval [0, z] with z = 4z0. Split P = (P1 + (0, y1)) ∪ (P2 + (2z0, y2)) as
in the proof of Lemma 17 and define a function Q of a pair of distributions of points as
above by

QP1,P2 =

∫ ∞

−∞
e−|C(t)| dt,
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where C(t) is defined as in Lemma 17, except using f instead of parabolas. In this case
C(t) is restricted to lie above [z0, 3z0], and would be unaffected by points of P lying to the
left of x = 0 or to the right of x = 4z0 if they were to exist.

Using the same argument as in Lemma 17 we have that

P
(4z0+z)
P1,P4

= EP2,P3P
(4z0)
P1,P2

QP2,P3P
(z)
P3,P4

, z ≥ 4z0, (24)

where we have split the strip into two strips of widths 4z0 and z respectively, P1, P2

represent the points in the leftmost and rightmost 2z0 of the first strip and P3, P4 represent
the points in the leftmost and rightmost 2z0 of the second strip (up to vertical translations).
Here we use the fact that only points of P2 and P3 can affect the area of the region C(t)

used in the definition of QP2,P3 . We wish to use Lemma 20 to show that P
(z)
P1,P2

increases
exponentially with z to a high degree of accuracy. First, since Lemma 20 considers only
finite matrices, we discretize the probability space of possible values of the Pi. Since the
bounds in Lemma 20 are independent of the size of the matrix, this can be done to arbitrary
accuracy. We now can regard P = (PP,P ′)P,P ′ and Q = (QP,P ′)P,P ′ as finite matrices whose
rows and columns are indexed by the possible configurations of Pi. Note that all entries
of P and Q are strictly positive. Then (24) becomes

P (4z0+z) = P (4z0)EQEP (z), z ≥ 4z0,

where E is a diagonal matrix with entry EP,P being the probability of P. Thus by induction

P (4kz0+z) = (P (4z0)EQE)kP (z) for k ≥ 1, z ≥ 4z0. (25)

By Lemma 18 we also know that Q is K-nearly rank 1 with K = O(z
3/2
0 ). (The proof

of Lemma 18 applies to the slightly modified parabolas with only a slight change in the
constants.) Thus by Lemma 19 we know that P (4z0)EQE is also K-nearly rank 1. Thus,

by Lemma 20, if k is larger than z
3/2+1/3
0 = z

11/6
0 then A = (P (4z0)EQE)k is (1 + ε)-nearly

rank 1 with ε = e−Ω(z
1/3
0 ). Now by (23) and (25), εf(4kz0 + z) is of the form uTAv and

εf(8kz0 + z) is of the form uTA2v for some positive vectors u and v in the discretized
approximation. Using B ≤ A ≤ (1 + ε)B with B a matrix of rank 1, B2 = λ′B, as in the
proof of Lemma 20, we obtain

λ′(1 + ε)−1uTAv ≤ λ′uTBv = uTB2v ≤ uTA2v

≤ (1 + ε)2uTB2v = λ′(1 + ε)2uTBv ≤ λ′(1 + ε)2uTAv,

so by taking a sufficiently fine discretization we obtain

| log εf(8kz0 + z)− log εf(4kz0 + z)− log λ′| ≤ 2ε
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for z ≥ 4z0, k ≥ z
11/6
0 . Now λ′ depends on z0 and k, but not on z, and ε = e−Ω(z

1/3
0 ), so

setting z1 = 4kz0 and replacing z + 4kz0 by z, we have

log εf(z + z1)− log εf(z) = h(z1) +O(e−η
′z

1/3
0 )

for z ≥ 2z1 and some fixed η′ > 0 independent of z0 or z1. Using (22) we deduce that
provided 2z1 ≤ z ≤ cz30 − z1,

log ε(z + z1)− log ε(z) = h(z1) +O(e−η
′′z

1/9
1 ), (26)

for some η′′ > 0 independent of z, z0, and z1. Here we have used the fact that z1 = O(z30)

so that z
1/9
1 = O(z

1/3
0 ).

Now for sufficiently large z1 we can find a z0 ≥ 4 and k ≥ z
11/6
0 with z1 = 4kz0 and

10z1 ≤ cz30 − z1, say. Indeed, it is enough to find z0 with z
17/6
0 ≪ z1 ≪ z30 . We fix such a

choice and now regard z0, k, and hence h(z1), as functions of z1 only. Thus (26) holds for
all sufficiently large z1 and 2z1 ≤ z ≤ 10z1.

Assume z1 ≤ z2 ≤ 2z1. Then applying (26) twice with (z, z1) = (2z1 + 2z2, z1),
(3z1 + 2z2, z2), adding, and comparing with the result for (2z1 + 2z2, z1 + z2), gives

h(z1 + z2) = h(z1) + h(z2) +O(e−η
′′z

1/9
1 ). (27)

Using {(⌈n−1
2
⌉ + 1)z1, (⌊n−1

2
⌋ + ζ)z1} for {z1, z2} in (27), ordered so that z1 ≤ z2, we

can show by induction that h((n + ζ)z1) = nh(z1) + h(ζz1) + nO(e−η
′′z

1/9
1 ) for all n ≥ 0

and ζ ∈ [1, 2]. Letting n → ∞ we see that both lim sup h(z)/z and lim inf h(z)/z are

of the form (h(z1) + O(e−η
′′z

1/9
1 ))/z1 for every sufficiently large z1. Therefore the limit

α = limz→∞ h(z)/z exists, and h(z1) = αz1 +O(e−η
′′z

1/9
1 ).

Set g(z) = log ε(z)− αz. Then by (26) we have

g(z + z1) = g(z) +O(e−η
′′z

1/9
1 ) (28)

for all z with 2z1 ≤ z ≤ 10z1. From this one can deduce that the limit β = limz→∞ g(z)
exists. Indeed, setting z = 2z1 and using induction gives

g((1.5)k2z1) = g(2z1) +

k
∑

i=0

O(e−η
′′(1.5kz1)1/9) = g(2z1) +O(e−η

′′z
1/9
1 ).

One more application of (28) with {z−(1.5)k2z1, (1.5)
k2z1} in place of {z, z1} gives g(z) =

g(2z1)+O(e
−η′′z1/91 ) for all z with 3(1.5)k2z1 ≤ z ≤ 11(1.5)k2z1, and hence for all sufficiently
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large z. As this holds for all sufficiently large z1, β = limz→∞ g(z) exists and g(2z1) =

β +O(e−η
′′z

1/9
1 ) for all sufficiently large z1. Thus

log ε(z) = αz + g(z) = αz + β +O(e−η
′′(z/2)1/9) = αz + β +O(e−ηz

1/9

).

Finally we note that ε(z) = zE(e|B|) ≥ z → ∞ as z → ∞, so α > 0.

Monte Carlo computer simulations were performed to estimate ε(z) for various values
of z up to z = 8 (see Figure 9 for a plot up to z = 5). Using these results, the constants
in Theorem 3 were estimated as

α = 1.12794± 0.00001

β = −1.05116± 0.00005 (29)

(errors are ±1 standard deviation). The O(e−ηz
1/9

) error term in Theorem 3 appears to
be conservative as it actually seems to tend to zero extremely rapidly as z → ∞. Indeed,
the approximation ε(z) ≈ eαz+β is within 2% of the correct value when z > 0.85, and for
z > 3 the error is insignificant.

For small z, one can expand ε(z) as a power series in z. One can show that the only
non-zero terms are of the form cz1+3k and the first few terms are

ε(z) = z + 1
12
z4 + 1

64800
z10 − 1

2721600
z13 + · · · (30)

(there is no z7 term). We obtained these coefficients by first expanding ε(z) = zE(e|B|) =
z + zE|B| + zE(|B|2)/2 + . . . . If we write R = [0, z] × [0, z2/2], then B depends only on
the points in P ∩R. Expanding E(|B|i) according to the (Poisson distributed) number of
points in P∩R, it is enough to calculate E(|B|i) conditioned on P∩R containing exactly k
points for small values of i and k. These conditional expectations can then be represented
as integrals over i-tuples of points in R of the probability that all i points lie in B, which is
equivalent to all k Poisson points lying in some subset of R determined by these i points.
The values of these integrals were evaluated via symbolic integration using Mathematica
for small values of i and k so as to obtain the expansion (30).

7 Extending to large h

We now consider the issues that occur when h is large. The main problem is that the
break may be topologically complicated, and may meander back and forth as it crosses the
strip Sh. We wish to show an approximately exponential dependence of Ih,r as a function
of h, and so we aim to compare I2h,r with I

2
h,r. This will be done by considering S2h as two
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Figure 9: Plot of log ε(z)− 1.12794z + 1.05116 against z.

copies of Sh, one on top of the other, and matching breaks up on these two independent
strips. However, to combine breaks of two thin strips to form a break of a thicker strip
needs these breaks to look “nice” at the point at which they meet.

We use a technique involving “surgery”, that is, we take breaks that are “bad” and
map them in a measure preserving way into breaks that are “good” by cutting and pasting
certain regions in Sh. As long as this map is a “not too many”-to-1 map, we can then
lower-bound the proportion of breaks that are good. We shall use the following general
lemma, leaving the precise definition of a “good” break to later.

Lemma 21. Suppose we have, for each bad break b, an at most k-to-1 map ψb on the
probability space that converts b into a good break without destroying any break or converting
any other good break into a bad break. Suppose further that it can only change bad breaks
to good breaks if they are originally adjacent to b, and can generate at most one new break
which is then immediately to the right of b. If ψb is measure preserving when restricted to
any subset where it is injective, then the intensity of good breaks is at least Ih,r/(12k + 1).

In Lemma 21 we assume that there is some consistent labeling of the breaks, for exam-
ple, labeling by integers b from left to right with 0 being assigned to the first break ending
to the right of x = 0. Also, the map ψb actually only needs to be defined on the subset of
the probability space where the break b is bad.

Proof. Fix a large interval [0, x] and let T = {b1, . . . , bn} be a linearly ordered set of
symbols representing the breaks in [0, x]× [0, h] in their left-to-right order. Let pT,S be the
probability that there are |T | breaks and the subset S ⊆ T corresponds to those breaks
that are good. The existence of ψb, b ∈ T \ S, implies that

pT,S ≤ k
(

∑

A⊆{b−,b+}
pT,S∪A∪{b} +

∑

A⊆{b−,b+,b′}
pT∪{b′},S∪A∪{b}

)
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where b± are the breaks adjacent to b in T , and b′ is a new break inserted immediately to
the right of b in T (between b and b+). Indeed, the right hand side gives at most k times
the probability of the image of ψb restricted to the event where there are |T | breaks and
S is the set of good breaks. This image includes the cases when b is made good, b± are
possibly made good, and either zero or one new break b′ is generated, which may be either
good or bad.

Summing over all pairs (S, b) with |S| = r and b ∈ T \ S and letting pn,r denote the
probability that there are n breaks of which r are good, we have

(n− r)pn,r ≤ k
(

2
∑

i=0

(

2
i

)

(r + 1 + i)pn,r+1+i +
3

∑

i=0

(

3
i

)

(r + 1 + i)pn+1,r+1+i

)

.

The factor of n− r gives the number of choices for b for each choice of S, and the factors
of r + 1 + i on the right hand side count the number of choices of b for each fixed choice
of the set S ∪ A ∪ {b} when |A| = i. Summing over r and n gives

EB − EG ≤ k(4EG + 8EG),

where EB =
∑

n,r npn,r is the expected number of breaks and EG =
∑

n,r rpn,r the expected
number of good breaks in [0, x]× [0, h]. Thus EG ≥ EB/(12k+1), and so the result follows
on letting x → ∞.

For any point v ∈ R
2, write Br(v) = {x ∈ R

2 : ‖x− v‖ < r} for the open disk of radius
r about v. For z ∈ R× [0, r], write rz = max{x : ‖(x, 0)− z‖ ≤ r} for the rightmost point
on the x-axis that lies within distance r of z. We shall make use of the following simple
lemma.

Lemma 22. Let vi = (xi, yi) ∈ P, i = 1, 2, 3, be pairwise non-adjacent vertices of Gh,r

with yi ∈ [0, r) and x1 < x2 < x3. Then rv3 > rv1.

Proof. If y1 > y2 then we must have rv1 ≤ x2 as (x2, 0) is at least as far from v1 as
v2 = (x2, y2) and ‖v1 − v2‖ ≥ r. Thus rv1 < x3 < rv3 . Similarly, if y1 > y3 then
rv1 ≤ x3 < rv3 . Thus we may assume y1 ≤ min{y2, y3}. Set v4 = (x4, y4) := (rv1 , 0),
ṽ1 := (x1, r), and assume rv3 ≤ rv1 . Then x3 < rv3 ≤ rv1 and so v2, v3 ∈ (x1, x4)× [y1, r).
But rv3 ≤ rv1 implies that v3 /∈ Br(v4). Also |x4 − x1| ≤ r, so (x1, x4) × [y1, r) ⊆
Br(ṽ1)∪Br(v4). Hence v3 ∈ Br(ṽ1) and so ṽ1 ∈ Br(v3). But then (x1, x3)×[y3, r) ⊆ Br(v3).
Also (x1, x3) × [y1, y3) ⊆ Br(v1) ∪ Br(v3), so there is no possible location for the vertex
v2 ∈ ((x1, x3)× [y1, r)) \ (Br(v1) ∪ Br(v3)) = ∅, a contradiction.

A break between good components C and C ′ is called a bottom left clean break if the
following holds. Assume C is to the left of C ′ and v ∈ C is the rightmost vertex of C
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that is within distance r of ∂S−
h . Then there do not exist vertices u, u′ in some component

C ′′ 6= C (possibly C ′′ = C ′) and within distance r of ∂S−
h , with u on the left of v, u′ on the

right of v, and ru′ > rv (see Figure 10). We define bottom right clean and top left/right
clean similarly.

Lemma 23. There exists h0 > 0 such that for all h ≥ h0 and r ≥ 7, the intensity of breaks
that are bottom left clean and lie between two good components, each of width at least eh/4,
is at least Ih,r/38.

Proof. If h ≤
√
3
2
r then all breaks are bottom left clean as no component C ′′ can cross

the vertical crossing sensor-path through v. The result then follows from Lemma 12 for
sufficiently large h. Thus we may assume h >

√
3
2
r. Fix a large constant K and choose h0

sufficiently large so that for h ≥ h0,

eh/4 ≥ 2Kh > Kr.

We define a break b between two good components C and C ′ to be bad if C and C ′ are
of width at least eh/4, but the break is not bottom left clean. Hence a break is good if
either it is bottom left clean, or it is adjacent to a good component of width less than eh/4.
Suppose b is bad and let v ∈ C and u, u′ ∈ C ′′ be as in the above definition, with u the
leftmost vertex for which such a pair (u, u′) exists. Let γ be a sensor-path in C ′′ joining u
to u′. Then this path passes either above or below the vertex v (see Figure 10). In both
cases we shall construct a map ψb as in Lemma 21 which converts the break into a bottom
left clean (and hence good) break. In each case, the map ψb will only affect vertices within
distance O(r) of the break, and hence (for large enough K) will not affect components to
the left of C or to the right of C ′. In particular it will not affect any break that is not
adjacent to b. Moreover, the only effect on C and C ′ relevant to adjacent breaks will be to
possibly change their widths (by O(r)). This may cause an adjacent break to become good
by reducing the width of C or C ′ below eh/4. (As b is bad, both C and C ′ are originally of
width at least eh/4.)

Claim 0.1. No sensor-path γC of C can pass under a vertex w that is to the right of v
and within distance r of ∂S−

h .

If a line segment vivi+1 of γC passes under w with vi to the left and vi+1 to the right of w,
then vi+1 ∈ C must at least distance r from ∂S−

h (and hence be above w) by choice of v as
the rightmost vertex of C within distance r of ∂S−

h . But then vi must be below w. Hence
w is adjacent to both vi and vi+1 as both x and y-coordinates of w are between those of
vi and vi+1, and ‖vi − vi+1‖ < r. Hence w ∈ C and is to the right of v, contradicting the
choice of v.
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Figure 10: Two configurations giving an unclean break. The vertices v, v′ lie in C and u, u′

lie in C ′′. Path γ joining u to u′ passes below v (left) or above v (right). Other paths γ̃
demonstrating the uncleanness of break cannot exist before (left) or after (right) surgery
as sensor-paths in distinct components would then be too close.

Claim 0.1 implies that any crossing sensor-path of C must pass to the left of u as it
cannot cross γ, cannot meet ∂S−

h to the right of v, and cannot pass under u′. Hence x+C is
at least r

2
to the left of u. As the width of C is at least Kr, we also deduce that there is

a sensor-path γC joining v to a point of ∂S−
h that is at least Kr to the left of u (x−C is at

most r
2
to the left of the leftmost vertex of C within

√
3
2
r of ∂S−

h ). Let γC be a such path.
We may assume (by e.g., taking it to be of minimal length) that γC is a simple path.

Case 1. The sensor-path γ passes below v.

We first show that in this case there cannot be another pair (ũ, ũ′) in a component C̃ ′′

demonstrating the uncleaness of the break unless C̃ ′′ = C ′′ and any sensor-path γ̃ joining
ũ and ũ′ also passes below v. Indeed, if the path γ̃ went below v and C̃ ′′ 6= C ′′, there
would be two sensor-paths from different components passing below w := v (see Figure 10,
left), while if γ̃ went above v, then there would be two sensor-paths (γC and γ with γC
above γ) from different components passing below w := ũ (u is to the left of ũ by choice
of u; also γC must pass under ũ as it cannot pass under ũ′ by Claim 0.1 and it cannot
cross γ̃). In either case this would contradict either Lemma 6 or Lemma 7 as either the
two sensor-paths would approach within distance r

2
of each other, or the higher one would

approach within distance r
2
of w.

Define the point s to be vertically below v at distance r from v (so s will actually lie

outside of the strip Sh). Let p be the point at distance r from v, but
√
3
2
r above s and to

the right of s (see Figure 11). The point q is defined to be the nearest point to s that is at
distance r from both v and p, so that vpq forms an equilateral triangle. The point s′ is r
to the left of s, ws′s is equilateral with w above s′s, and g is at distance r from w, at the
same height as v, and to the left of w.
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Define the region D+ = (Br(s
′) ∩ Br(v)) \ (Br(g) ∪ Br(q)). Define the region D− to

be those points that are outside and below Br(v) but above s, to the left of q, and either
within horizontal distance r of q (if below q) or within distance r of q (if above q). Let L
be the set of points in R

2 that are above and to the left of s.

v

p

q

ss

g

tt

w r
r

D+

D--
1

2

3

12

3

3
2

r

Figure 11: The regions D±. The subsets D±
i , i = 1, 2, 3, used in the proof of Lemma 24

are given by the shading. Note that the horizontal line through s is below ∂S−
h .

Let φ : D− → D+ be the injective area-preserving map given by Lemma 24 below.
Since γ joins u and u′ and crosses vs, the last vertex uL of γ lying in L must lie in
(Br(s) \ Br(v)) ∩ L. This vertex uL lies in C ′′ and is within distance r of any point of
D+. But any point of D+ is within distance r of v ∈ C. Thus P ∩ D+ must be empty,
otherwise the components C and C ′′ would be joined. Move all the vertices x ∈ P ∩D−

to their corresponding positions φ(x) ∈ D+. Some points of D− may lie outside Sh, but
if D− ∩ Sh 6= ∅ then D+ must lie entirely within Sh. We define ψb in this case to be the
induced map on (this subset of) the probability space of Gh,r.

Claim 1.1. This map neither creates nor destroys any break.

Equivalently, ψb does not create or destroy any good component. All vertices originally in
D− were in C ′′ as consecutive vertices on γ to the left and right of s are, between them,
adjacent to every vertex in D−. Thus C ′′ is the only component that can lose vertices. On
the other hand, C gains the vertices that were moved since they are all now adjacent to v.
Since C does not lose any vertices, C remains good.

The vertices that have been moved are now not adjacent to anything outside Br(v) to
the right of q, and there are no longer any vertices in D−, so they are no longer adjacent
to anything outside of C to the right of s. Recall that γC joins v to ∂S−

h at a point far
to the left of v. Let E ⊆ Sh be the region cordoned off by γC and vs. Suppose a vertex
φ(x) ∈ D+ is adjacent (or equal) to a vertex z outside of E. Let x′ = x if x ∈ L, and
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x′ = uL, the last vertex of γ in L, if x /∈ L. Then x′ ∈ E as a path in C ′′ joining x′ to u′,
say, cannot cross γC . By assumption, the vertical segment of γC meeting ∂S−

h is far from
φ(x), so either φ(x)z or x′φ(x) must cross an edge vivi+1 of γC . But ‖φ(x)−x′‖ ≤ (

√
3−1)r

by Lemma 24. Thus there is a curve joining x′ ∈ C ′′ to z and crossing vivi+1 which is of
length at most ‖z − φ(x)‖ + ‖φ(x) − x′‖ ≤

√
3r. Hence either x′ or z is within distance√

3
2
r of the line segment vivi+1. But any such vertex must be adjacent to either vi or vi+1.

As x′ /∈ C, we must have z ∈ C. Thus if φ(x) is adjacent to a vertex z /∈ C, then z
must be in a component of the new graph which is contained within E. This component
cannot be good (and most importantly, it cannot meet C ′), as a crossing sensor-path for
this component would cross γC . In particular, we have not merged two good components.

Now consider the component C ′′. Suppose C ′′ is good (so that C ′′ = C ′). Consider the
segment of a crossing sensor-path γC′ from u to ∂S+

h . This must go through some vertex
in D−. Let uD be chosen so that it is the last such vertex in D− on this path. The next
vertex u+D on γC′ must lie to the right of q, outside of Br(v), and within r of D−. Thus

u+D lies below p and hence within
√
3
2
r of ∂S−

h . Hence the subset C ′′
ψ ⊆ C ′′ of vertices still

connected to u+D is good.
Now suppose there is a second good component in C ′′\C ′′

ψ and suppose γ′C′ is a crossing
sensor-path in this component joining some vertex ofD− to ∂S+

h . Let u
′+
D be the vertex after

the last vertex of γ′C′ in D−. Without loss of generality u′+D is to the left of u+D. A simple
calculation shows that u+D is within distance

√
3r of v. But then u′+D is separated from ∂S+

h

by a region Br(u
+
D) ∪ Br(v) ∪ D− of width at least r, contradicting the existence of the

path γ′C′. Thus after removing the vertices in D−, C ′′ contains a single good component
C ′′
ψ containing the vertices of γC′ after uD, and the remaining vertices of C ′′ lie in bad

components.
If on the other hand C ′′ is bad, removing vertices from C ′′ will not change this fact,

so all components of C ′′ \ D− are bad. Hence the resulting configuration is still a break
between good components, and no other breaks have been created or destroyed.

Claim 1.2. The break b is transformed into a bottom left clean break.

From the proof of Claim 1.1 we know that all vertices of Cψ \ C lie in E. But if a vertex
v′ ∈ E is to the right of v then γC (forming part of ∂E) must pass below v′, contradicting
Claim 0.1. Hence v is still the rightmost vertex of the new component Cψ ⊇ C that is
within r of ∂S−

h .
There is now no sensor-path outside of C passing below v as such a path would contain

a vertex in D−. If some pair (ũ, ũ′) demonstrated the uncleanness of this break, then the
path joining ũ and ũ′ would pass above v and not contain any vertices in D+ (as these
vertices have been absorbed into C). But then ũ and ũ′ would have demonstrated the
uncleanness of the original break, which we have already ruled out.
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Claim 1.3. The map ψb is injective and measure preserving on Case 1 configurations.

As v is still the rightmost vertex of C within r of ∂S−
h , the sets D+ and D− are deter-

mined by the resulting configuration. Hence this transformation can be reversed, and ψb
is injective on this subset of the probability space. As we can regard ψb as just swapping
regions in Sh, it is clearly measure-preserving. Thus the claim follows.

u
p

q

s s

gw

D+

D--

Figure 12: The case when γ passes above v.

Case 2. The path γ passes above v.

Recall that the path γC which joins v to ∂S−
h must pass under the vertex u on γ. We

now repeat the above argument with u in place of v and with left and right reversed (see
Figure 12). However, there are a few differences in the proof. Note that the surgery is now
being applied to the good component C as all vertices in D− are adjacent to some vertex
of γC . Let Cr be the set of vertices of C that are within distance r of ∂S−

h and are to the
right of the region D−. Note that if v ∈ D− then Cr = ∅, otherwise v is the rightmost
vertex of Cr. Let Cl be the set of vertices of C that are within distance r of ∂S−

h and are
to the left of the region D−. Note that Cl 6= ∅ as, for example, it contains the first vertex
of the sensor-path γC which is at least Kr to the left of u. Finally, let C+ be the set of
vertices φ(x), x ∈ P ∩D−, that have been moved by ψb.

Claim 2.1. If a sensor-path γy avoiding C ′′ ∪D− joins a vertex y ∈ C+ ∪ Cr to a vertex
which is to the left of u, then it must pass through a vertex z /∈ C+ which is to the right
of u′, within distance r of ∂S−

h , and satisfies rz > rv.

Note that by replacing y by the last vertex of γy in C+ ∪ Cr, we can assume without loss
of generality that y is the only vertex of γy in C+ ∪ Cr. In particular, all vertices of γy
except possibly y are vertices in the original graph Gh,r.

As there is no sensor-path below u avoiding C ′′ ∪ D−, γy must pass to the right of
u′ and then above u. Indeed, γy cannot cross the sensor-path γ joining u and u′ by the
same argument as in Claim 1.1. Hence γy must cross the horizontal ray u′+([0,∞)×{0})
from u′.
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Suppose y is to the left of u′. Since the vertices of γy other than y cannot approach
within distance r of u′ ∈ C ′′, there must be some vertex z on γy which is below and to the
right of u′. However, any such vertex z would satisfy rz > ru′ > rv as required. Thus we
can assume that y is already to the right of u′, and as u′ is to the right of v we must then
have y /∈ Cr by choice of v. Hence y = φ(x) ∈ C+ and all other vertices of γy lie outside
of C+ ∪ Cr.

Let z be the vertex adjacent to y on γy. Now z /∈ Br(u) ∪D− as z /∈ C ′′ ∪D−. Also
z /∈ Br(s)∩Br(s

′) as otherwise z would be adjacent to the first vertex of γC that is to the
right of s, and hence z would lie in Cr. As z is also adjacent to y ∈ D+, z must lie to the
right of y and hence to the right of u′. If z is within distance r of ∂S−

h , then z /∈ C as
z /∈ Cr. Applying Lemma 22 to {v, u′, z} then implies rz > rv as required. Hence we can
assume that z is not within distance r of ∂S−

h . But that means that z must higher than
the point g in Figure 12. But as z ∈ Br(y) \ Br(u) and y ∈ D+, z ∈ Br(w). However,
u′ /∈ Br(z), u

′ /∈ Br(s) ∩ Br(s
′) (as otherwise it would be adjacent to a vertex in γC),

and u′ is below z (as it is within distance r of ∂S−
h ). As u′ is to the left of y and avoids

Br(z)∪ (Br(s)∩Br(s
′)) and as w ∈ Br(z), u

′ is in fact to the left of w. In particular, u′ is
at most r

2
to the right of v and ‖u′ − v‖ ≥ r. But this implies ru′ ≤ rv, contradicting the

choice of u′.

Claim 2.2. This map does not destroy any break, and can generate at most one new
break immediately to the right of b.

After surgery, there is a single component Cψ containing Cl in the transformed graph, which
is good (by the argument in Claim 1.1 showing that C ′′ remains good if it was originally
so). As before, it is possible that the moved vertices φ(x) ∈ D+ may join components.
However, to show that ψb does not destroy breaks, it is enough to show that there is no
path from any φ(x) ∈ D+ to Cl. Taking the shortest such path, we can assume that such
a path does not meet C ′′, as no path could join C ′′ and Cl without first going through a
vertex in C+. Claim 2.1 then implies Cl is joined in the original graph to a vertex z within
distance r of ∂S−

h and to the right of u′ and hence to the right of v. But then z ∈ C
contradicts the choice of v.

It is possible that a new good component may be generated. This may happen if C ′′

becomes good by the addition of the vertices in C+ and possibly by amalgamation with
some other bad components. However, it is clear that at most one new good component
is formed as all the new vertices are joined to a single component. Hence at most one new
break is formed, and that this break is immediately to the right of b, which we now identify
with the break immediately after the good component containing Cl.

Claim 2.3. The break b is transformed into a bottom left clean break.

Let Cψ be the (good) component containing Cl in the transformed graph. Then Cψ ⊆ C.
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Let v′ be the rightmost vertex of Cψ that is within distance r of ∂S−
h . Then Claim 2.1

implies that v′ is to the left of u, as otherwise (as in Claim 2.2) we would have a vertex
z ∈ Cr to the right of v. Suppose there is a pair (ũ, ũ′) demonstrating the uncleanness of
this break (see Figure 10, right) and let γ̃ be the path between them. As v′ is to the left
of u, ũ must also be to the left of u.

Now ũ /∈ C ′′, as otherwise we could have originally used the pair (ũ, u′) in place of
(u, u′), contradicting the choice of u as the leftmost vertex for which such a pair (u, u′)
exists. Suppose then that γ̃ contains one of the moved vertices φ(x) ∈ C+ and consider
the shortest subpath of γ̃ from ũ to C+. This path avoids C ′′ as otherwise ũ ∈ C ′′. Thus
by Claim 2.1 γ̃ contains a vertex z /∈ C+ with rz > rv. But the segment of this path from
ũ to z does not meet C+. Thus this segment exists in the original graph. But then (ũ, z)
demonstrates the uncleanness of the original break and ũ is to the left of u, contradicting
the choice of u. Hence we may assume γ̃ avoids C+ and so is a path in the original
graph Gh,r.

Now consider ũ′. As γ̃ is a sensor-path in the original graph and ũ /∈ C ′′ we must have
ũ′ /∈ C ′′. If ũ′ were to the right of u′, then ũ′ could not be adjacent to v (by choice of
v) and then applying Lemma 22 to the vertices {v, u′, ũ′} gives rũ′ > rv. Hence the pair
(ũ, ũ′) demonstrates the uncleanness of the original break, again contradicting the choice
of u. Thus ũ′ is to the left of u′. Suppose that ũ′ is to the right of u. The path γ̃ cannot
pass below u as this would imply it would pass through D− which is now empty. Thus γ̃
passes above u. Thus the line segment vũ′ crosses γ. But both v and ũ′ must be at least√

3
2
r from γ, so ‖ũ′−v‖ ≥

√
3r. But both v and ũ′ are within r of ∂S−

h and so ũ′ must be at

horizontal distance at least
√
2r from v. If ũ′ is to the right of v then rũ′ > rv and so (ũ, ũ′)

demonstrate the uncleanness of the original break, contradicting the choice of u. Thus v is
to the right of ũ′. But then we have a paths γ and γC passing below ũ′, with γ above γC .
Thus γ passes within distance r

2
of either ũ′ or γC , contradicting the fact that γ is a path

in a different component from ũ′ or γC . Thus ũ
′ is to the left of u. But then ũ′ must be at

least
√
3
2
r from ∂S−

h as the path from v′ to v in the original component C passes below ũ′.

As ũ′ is to the left of u, within vertical distance r−
√
3
2
r of u, and ‖ũ′−u‖ ≥ r, u′ must be

at least (1 − (1 −
√
3
2
)2)1/2r to the left of u, and hence is to the left of p in Figure 12. By

assumption rũ′ > rv′ , so v
′ /∈ Br(ũ

′) ∪ Br((rũ′, 0)). Since v
′ is within distance r of ∂S−

h , v
′

must be at least r
2
to the left of ũ′. But then it is at horizontal distance more than r from

D−. However, there is a path in C joining v′ to some point in D− and the last vertex on
this path before entering D− is within distance r of ∂S−

h . This contradicts the fact that v
′

is the rightmost vertex of Cψ within distance r of ∂S−
h .

Claim 2.4 The map ψb is at most 2-to-1 on Case 2 configurations, and is measure-
preserving when restricted to subsets where it is injective.
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Consider the rightmost vertex v′ of Cψ that is within distance r of ∂S−
h . The x-coordinate

of v′ must be within r of that of q, so determines the x-coordinate position of u up to an
interval of length r. The y-coordinate of u must lie in [

√
3
2
r, r] as otherwise no path γC

could pass beneath it. Thus, given v′, u is restricted to lie in an r by (
√
3−1) r

2
rectangle R.

As all points of D+ are within distance
√
3
2
r of ∂S−

h , all vertices in R lie in the original
graph Gh,r. The subgraph of Gh,r consisting of vertices in R can have at most two com-
ponents. Once a component is selected, u is uniquely determined as the leftmost vertex in
this component in R. Thus there are at most two choices for u. Thus the mapping is at
most 2-to-1. It is clear that it is also measure-preserving on subsets where it is injective.

Putting both cases together, we have an (at most) 3-to-1 locally measure preserving
mapping on an unclean break converting it into a clean break which can, at worst, generate
a new break immediately to the right of b and convert neighboring breaks into good breaks.
By Lemma 21, the intensity of good breaks is then at least Ih,r/37. The proportion of
breaks that are not surrounded by good components of widths at least eh/4 is at most
2(eh/4 + cW )e−h/3 by Lemma 12. This is at most 10−4, say, if h ≥ h0 and h0 is chosen
sufficiently large. Thus the intensity of bottom left clean breaks surrounded by wide good
components is at least Ih,r/37− Ih,r/10

4 ≥ Ih,r/38.

Lemma 24. There exists an injective area-preserving map φ : D− → D+ such that

(a) if x ∈ D− ∩ L then ‖φ(x)− x‖ ≤ (
√
3− 1)r,

(b) if x ∈ D− \ L then ‖φ(x)− x′‖ ≤ (
√
3− 1)r for all x′ ∈ (Br(s) \Br(v)) ∩ L,

where D± are as in Figure 11 and L is the set of points above and to the left of s.

Proof. Define D−
1 to be the subset of D− which is to the right of the point t, where t is

r/4 to the left of s (see Figure 11). Let D+
1 be the subset of points of D+ that lie within

(
√
3− 1)r of s. It can be shown that D+

1 lies to the left of w, and hence all points of D+
1

are also within distance (
√
3− 1)r of s′. It is then easy to check that all points of D+

1 are
within distance (

√
3− 1)r of any point x′ ∈ (Br(s) \Br(v)) ∩ L.

Define D−
3 to be the set of points of D− that are within distance (

√
3 − 1)r of w, and

D+
3 to be the set of points of D+ that are not within distance (

√
3 − 1)r of either t or t′,

where t′ is the bottom left corner of D−. Let D±
2 = D± \ (D±

1 ∪ D±
3 ). Then all points

of D+
2 are within distance (

√
3 − 1)r of any point in D−

2 , and all points of D+
3 are within

distance (
√
3− 1)r of any point of D−

3 .
A rather tedious calculation shows that |D−

i | < |D+
i | for i = 1, 2, 3. Hence there exists

an area-preserving injective function φ : D− → D+ so that φ(D−
i ) ⊆ D+

i . Any such map
satisfies conditions (a) and (b), so the result follows.
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Lemma 25. There exists c > 0 such that for all h ≥
√
3
4
r, r ≥ 7,

cr−1I2h,r ≤ I2h,r ≤ 100hI2h,r. (31)

Proof. Cut the strip S2h horizontally into two strips S
(t)
h and S

(b)
h with S

(t)
h lying above

S
(b)
h . If a (good) separating path γ exists for S2h then its restrictions to S

(t)
h and S

(b)
h

must contain separating paths γ(t) and γ(b) of S
(t)
h and S

(b)
h respectively. The path γ may

cross the dividing line y = h in more than one point, and hence may include segments
that are not in either γ(t) or γ(b). Thus we cannot assume that γ(t) and γ(b) join up.
Moreover, we cannot assume that γ(t) and γ(b) are good separating paths, even though γ
is. However, the interval J = [x+C , x

−
C′] corresponding to the break in G2h,r containing γ

must intersect the intervals J (t) = [x+
C(t), x

−
C(t)′ ] and J (b) = [x+

C(b) , x
−
C(b)′ ] corresponding to

the breaks containing γ(t) and γ(b) in S
(t)
h and S

(b)
h respectively. Indeed, by Lemma 9, γ(t)

and γ(b) intersect J (t) × [h, 2h] and J (b) × [0, h], but both paths are subpaths of γ which
lies entirely within J × [0, 2h].

Write W , W (t), and W (b) for the random variables representing the widths of the
breaks in S2h, S

(t)
h , and S

(b)
h respectively. Since h ≥

√
3
4
·7 > 1 by hypothesis, we know from

Lemma 10 that E(W ) ≤ 10h and that E(W (t)) = E(W (b)) ≤ 5h. Therefore by Markov’s

inequality P(W ≥ 20h) ≤ 1
2
. Fix a break in S

(t)
h of width w. The probability that a

break occurs within distance 20h of this break in S
(b)
h is at most E(40h + w +W (b))Ih,r ≤

(45h + w)Ih,r, as the break must start within an interval of length 40h + w +W (b). Here

the expectation is over the Poisson process in S
(b)
h , which is independent of the process

in S
(t)
h . Thus the frequency of pairs of breaks lying within 20h of each other is at most

E(45h+W (t))I2h,r ≤ 50hI2h,r. Since at least half of all breaks in S2h give rise to such a pair,
I2h,r ≤ 100hI2h,r.

For the lower bound, note that Ih,r > 0 and the region {(h, r) : h0 ≥ h ≥
√
3
4
r, r ≥

7} ⊆ R
2 is compact, so by making c smaller if necessary we may assume the result holds

for all h ≤ h0. Thus in what follows we shall assume h ≥ h0 is sufficiently large.
Now fix the Poisson process in S

(t)
h and S

(b)
h and suppose that C

(t)
L and C

(t)
R are consec-

utive good components of widths at least eh/4 separated by a bottom left clean break in
S
(t)
h , while C

(b)
L and C

(b)
R are consecutive good components of widths at least eh/4 separated

by a top right clean break in S
(b)
h . Let v(t) be the rightmost vertex of C

(t)
L that is within

distance r of the bottom of S
(t)
h . Define C̃

(t)
L as the union of all components C of S

(t)
h which

meet a vertex u which is to the left of v(t) and within distance r of the bottom of S
(t)
h .

Define C̃
(t)
R as the complement of C̃

(t)
L in G

(t)
h,r. As the width of C

(t)
R is ≫ r, there is a

vertex u′ ∈ C
(t)
R within distance

√
3
2
r < r of ∂S

(t)−
h with ru′ > rv(t) . By the bottom left

cleanness of the break, C
(t)
R cannot then contain a vertex u within r of ∂S

(t)−
h which is to
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the left of v(t). Thus C
(t)
R ⊆ C̃

(t)
R . Similarly define C̃

(b)
R and its complement C̃

(b)
L , with v(b)

the leftmost vertex of C
(b)
R that is within distance r of the top of S

(b)
h . We now try to shift

S
(t)
h horizontally so that the breaks in S

(t)
h and S

(b)
h line up to form a break in S2h.

Define CL(t) as the component of G2h,r containing the vertices of C
(t)
L after S

(t)
h has

been shifted a distance t to the right relative to S
(b)
h . We claim that there exists tm ∈ R

and ε > 0 such that, for all t ∈ (tm − ε, tm), CL(t) is a good component and there exists a

break in G2h,r just to the right of this component and before C
(t)
R . We choose tm to be the

minimum t such that after the shift we have d(C̃
(t)
L , C̃

(b)
R ) = r. Note that tm almost surely

exists, as C̃
(t)
L contains all good components to the left of C

(t)
L and C̃

(b)
R contains all good

components to the right of C
(b)
R , and both sets almost surely contain vertices within r

2
of

the boundary between S
(t)
h and S

(b)
h .

Let x ∈ C̃
(t)
L and y ∈ C̃

(b)
R be such that after a shift of tm, ‖x− y‖ = r. Almost surely

there is an ε > 0 such that no vertex of C̃
(t)
R is within distance r + ε of x and no vertex of

C̃
(b)
L is within distance r + ε of y. Now fix t ∈ (tm − ε, tm). Then with a shift of t we have

r < d(C̃
(t)
L , C̃

(b)
R ) ≤ ‖x− y‖ < r + ε. Also, y is to the right of x (see Figure 13).

tx

y

v

u

CL
(t)~

CR
(t)~

CL
(b)~

CR
(b)~

Sh
(t)

Sh
(b)

Figure 13: Aligning two clean breaks so as to form a break in S2h.

Claim. If u ∈ C̃
(b)
L and v ∈ C̃

(t)
R , then ‖u− v‖ > r.

Suppose otherwise. Then both u and v are within distance r of the line y = h. We
first show that v is to the right of x. By the definition of C̃

(t)
R , v is to the right of v(t).

Thus if x is to the right of v, then it is to the right of v(t) and hence v /∈ C
(t)
L by definition

of v(t). Thus x ∈ C̃
(t)
L \ C(t)

L and so is in the same component as some point to the left of

v(t) that is also within distance r of ∂S
(t)−
h . Applying Lemma 22 to {v(t), v, x}, we deduce

that rx > rv(t) , contradicting the bottom cleanness of the break. Thus v lies to the right

of x. As ‖x− v‖ ≥ r + ε ≥ ‖x− y‖, v ∈ S
(t)
h cannot lie below the line segment xy. Also,

if v lies above x, then as ‖x − v‖ ≥ r, the line vu cannot pass to the left of x. Thus the
ray from v through u crosses the ray from x though y. Similarly, the ray from u through v
crosses the ray from y through x. Thus the finite line segments xy and uv intersect at some
point z, say. Now 2r+2ε ≤ ‖u− y‖+ ‖v− x‖ ≤ ‖u− z‖+ ‖z− y‖+ ‖v− z‖+ ‖z− x‖ =
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‖x− y‖+ ‖u− v‖ ≤ 2r + ε, a contradiction. Hence ‖u− v‖ > r as claimed.

The component in G2h,r containing C
(t)
L must be contained within C̃

(t)
L ∪ C̃(b)

L as there

is no edge from this set to its complement C̃
(t)
R ∪ C̃(b)

R . It remains to estimate the frequency
of these breaks for which ε is not too small and the resulting component CL(t) is good.

The sets C̃
(t)
L and C̃

(b)
R can be found by exploring the Poisson process in S

(t)
h and S

(b)
h

without encountering any vertex of C̃
(t)
R or C̃

(b)
L . As the vertices x and y depend only on

C̃
(t)
L and C̃

(b)
R we can condition on C̃

(t)
L and C̃

(b)
R and ask for the probability that no vertex

of C̃
(t)
R is within r + ε of x and no vertex of C̃

(b)
L is within r + ε of y. The extra excluded

area is at most π(r + ε)2 − πr2 = 2πrε + πε2 in each case. If ε = ε0/r this area is of
order ε0. Taking ε0 to be sufficiently small, this occurs with probability at least 1− 10−4,
say. Thus by Lemma 23, the intensity of clean breaks where this occurs is at least Ih,r/39,

say, independently in both S
(t)
h and S

(b)
h .

Now since h is sufficiently large and the widths of the good component C
(t)
L is at

least eh/4, we can show that with extremely high probability, C
(t)
L joins with part of C̃

(b)
L to

form a good component CL(t) in S2h. Indeed, all that is necessary is a column of non-empty
a × b rectangles (a and b as in Lemma 10) spanning one of a−1eh/4 columns of S2h. The
probability that one column consists entirely of non-empty rectangles is (1 − e−ab)2h/b ≥
e−h/300 (as ab ≥ 5.77 and b ≥ 2). The probability that none of the a−1eh/4 columns have

this property is (1 − e−h/300)a
−1eh/4 . But this is at most exp(−eh/5) for large enough h.

Since this is far smaller than the intensity of breaks, we now have a lower bound on I2h,r
of the form (ε0/r)(1− o(1))(Ih,r/39)

2 ≥ cr−1I2h,r.

The following lemma shows that breaks are usually “almost rectangular” when h≪ r2.
We shall need this so that we can approximate the excluded areas by parabolic regions
even when h is reasonably large, extending the argument in Section 6, which only applied
when h ≤

√
3
2
r, to all h ≤ δr2.

Lemma 26. There is a constant c > 0 such that, for all r ≥ 7, the proportion of good
components C for which the rightmost boundary of the excluded region to the right of
C deviates more than an angle ±θ, θ ∈ [0, π/2], from vertical at any point is at most
e−(θ−sin θ)r2+ch.

Proof. Let γb denote the boundary of the excluded region, that is, the rightmost boundary
of

⋃

v∈C Br(v) crossing Sh. We first note that for h≪ r, γb cannot deviate by more than an
angle O(h/r) from vertical and so −(θ− sin θ)r2+ ch ≥ ch−O(h3/r). Thus, by increasing
c if necessary, the result is automatic for h = O(1). Hence from now on we shall assume h
is bounded away from zero.

Let A denote the set of points at distance at most r from γb and to the left of γb. The
interior of A cannot contain any points of the Poisson process P, although the leftmost
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boundary γl of A must contain the points of P giving rise to γb. The curves γb and γl
are composed of sequences of arcs of circles of radii r centered on points on γl and γb
respectively (see Figure 14). We can calculate the area of A by dividing A into sectors.
Each sector has area r

2
times the length of the arc that gives rise to it (area φ r

2

2
is r

2
times

arc length φr when the angle of the sector is φ). Since the radii of the sectors start and
end horizontally, the sum of the angles of the sectors giving rise to γl is the same as the
sum of the angles of the sectors giving rise to γb. Hence |γl| = |γb|, where |.| denotes the
lengths of these paths. Thus, provided γl does not self-intersect (so that areas are not
double counted), we obtain

|A| = r
2
(|γl|+ |γb|) = r|γb|.

It is clear from the definition of γb that γb does not self-intersect, however γl may self-
intersect (see Figure 14). In this case, exclude sectors (equivalently sub-arcs of γl) that
intersect previously encountered sectors. The remaining arcs of γl still have length at least
h since the remaining arcs connect the top and bottom of Sh. Thus we still have

|A| ≥ r
2
(h+ |γb|),

even when γl does self-intersect.
We now estimate the length |γb| of γb. Let θ(s) be the (counterclockwise) angle of

γb from vertical at the point on γb that is distance sr along γb from the point where γb
meets ∂S−

h . The function θ(s) is piecewise linear with derivative 1 except at the corners
of γb where it discontinuously drops. Since γb goes a total vertical distance of h, we have

h = r

∫ |γb|/r

0

cos θ(s) ds.

Assume θ0 = θ(s0) and θ1 = θ(s1) are two values of θ(s) with s0 < s1 and θ0 < θ1. Then
there are subintervals of values of s where θ(s) increases (with derivative 1) which between
them cover all values from θ0 to θ1. Thus

h ≤ |γb|+ r

∫ θ1

θ0

(cosφ− 1) dφ = |γb| − r(θ1 − sin θ1) + r(θ0 − sin θ0),

or equivalently
|γb| ≥ h+ r(θ1 − sin θ1)− r(θ0 − sin θ0).

In the case when γl does not self-intersect, we can take θ0 = 0, θ1 = θ, or θ0 = −θ, θ1 = 0
if θ measured clockwise. Note that θ(0) < 0 < θ(|γb|/r) so 0 is always a value of θ(s) with
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0 < s < s1 (if θ1 = θ > 0) or s0 < s < |γb|/r (if θ0 = −θ < 0). Then |γb| ≥ h+ r(θ− sin θ),
so for any fixed constant c > 0,

|A| − c|γb| = (r − c)|γb| ≥ rh− ch + r2(θ − sin θ)− O(min{r, |γb|}).

In the case when γl does self-intersect, we can choose θ1 = θ0 + π for some θ0 as θ(s) must
increase by a total of more than π in order that γl self-intersects. Then |γb| ≥ h+πr− 2r,
so

|A| − c|γb| ≥ rh
2
+ r

2
|γb| − c|γb|

≥ rh− ch+ r2(π
2
− 1)−O(r)

≥ rh− ch+ r2(θ − sin θ)−O(r).

If h ≤ r
2
then |γb| = O(h) and γl does not self-intersect, otherwise r = O(h). Thus for any

h we have
|A| − c|γb| ≥ rh+ r2(θ − sin θ)−O(h) (32)

regardless of whether or not γl self-intersects.
Now tile Sh with squares of side length a ≈ 1 (which we will assume divides h). Let

T be the set of squares of our tiling intersecting γb and assume T contains n squares. By
Lemma 11, there are at most 1

2
µn choices for the set T starting at some fixed square R.

We choose R to be the leftmost square on the bottom row of T adjacent to ∂S−
h .

As γb passes through every square of T and there is no sensor within distance r of γb
on the left of γb, there can be no sensor within distance r−

√
2a of T on the left of T . This

excludes an area of at least |A| −
√
2a(|γl|+ |γb|) ≥ |A| − 2

√
2a|γb|. Indeed, the excluded

area contains all of A except those points within
√
2a and to the left of γb (as these may

be inside T ), and those points within
√
2a and to the right of γl (as from T we cannot

guarantee that these are sufficiently close to γb). As all of T lies within distance
√
2a of γb,

the area of T is at most 2
√
2a|γb| and hence n ≤ 2

√
2a−1|γb|. Thus the intensity of such

good components is bounded by

a−1
∑

n≤2
√
2a−1|γb|

1
2
µne−|A|+2

√
2a|γb| ≤ e−|A|+c|γb|

for some constant c > 0. Thus by (32), the intensity of such good components is

e−hr−r
2(θ−sin θ)+O(h).

The total intensity of good components is at least e−hr+O(h) by (3) for h ≥
√
3
2
r, and at least

he−hr = e−hr+O(h) for h <
√
3
2
r, h = Ω(1), by (12). Thus the proportion of good components

satisfying the conditions of the lemma is at most e−r
2(θ−sin θ)+O(h), as claimed.
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Figure 14: Estimating excluded area in Lemma 26.

8 Proof of Main Theorem

Proof of Theorem 2. The intensity of breaks is equal to the intensity of good components,
or equivalently, the frequency of points of P along the strip that are the rightmost vertices
of good components.

Assume first that h ≤ max{δr2,
√
3
2
r} with δ > 0 a small constant. Using Lemma 26,

there exists a c > 0 so that at most a proportion e−(θ−sin θ)r2+ch of breaks are such that γb
makes an angle of more than θ = π

3
, say, with the vertical. This is at most e−c

′r2 for some
c′ > 0 when h ≤ δr2 and δ is sufficiently small. Moreover, this proportion is exactly zero
if h ≤

√
3
2
r as then it is impossible for the rightmost boundary of the excluded region to

make an angle of more than π
3
with the vertical. Since e−c

′r2 = O(hr−5/3) for h ≥
√
3
2
r, we

only need to consider the intensity of these “almost rectangular” breaks, as the inclusion
of the non-rectangular breaks will only change the intensity by a factor of eO(hr−5/3), and
this factor can be absorbed into the error term in (1).

We now show that the probability of a vertex v being the rightmost vertex of a good
component followed by an almost rectangular break is at most z−1εfr(z)e

−hr, where z =
hr−1/3 and fr(x, x0) is defined by

fr(x, x0) =

{

r4/3 − r2/3(r4/3 − (x− x0)
2)1/2, if |x− x0| ≤ r2/3;

∞, otherwise.

Condition first on the presence of a vertex v and the vertices of a crossing sensor-path γRC
that lies to the left of v (possibly including the vertex v), and consider the probability that
γRC is the “rightmost” crossing sensor-path of a good component whose rightmost vertex
is v. Here the rightmost crossing path is constructed analogously to the leftmost crossing
path from the proof of Lemma 12, simply swapping “left” and “right” throughout. Usually
v will lie on γRC , but this need not be the case when v is close to ∂Sh.

Let R be the subset of Sh that lies to the right of v, and let S be the region explored
in the construction of γRC as in the proof of Lemma 12. Let P ′ be the Poisson process
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A
B

v
A

S
B

Figure 15: Rightmost crossing path and regions A and B defined in the proof of Theorem 2.
Note that A includes points to the right of v, but to the left of the explored region S. Also,
some points to the left of v can be to the right of A.

to the left of S ∪ R, and let A be the subset of S ∪ R that is within distance r of the
sensors of P̃ := γRC ∪ {v} ∪ P ′ (see Figure 15). Note that no sensor-path outside of C can
cross γRC , so excluding points within distance r of P̃ is the same as excluding points within
distance r of P̃ ∩ C = C. Also, any point in R that is to the left of S must necessarily be
close to ∂Sh, and within distance r of some point of γRC . Thus these points also need to
be excluded if v is to be the rightmost vertex of C. Thus, conditioned on the event that
the vertices of γRC ∪ {v} exist, the event that γRC is the rightmost crossing sensor-path of a
good component whose rightmost vertex is v is precisely the event A ∩ P = ∅, and hence
occurs with probability EP ′e−|A|, where the expectation is over the choice of P ′.

Now rotate P̃ clockwise 90◦, scale horizontally by r−1/3 and vertically by r1/3. Shift
vertically so that v is on the x-axis. Provided the rightmost boundary of the original set A
never becomes horizontal, the area of the region B defined in Section 6, using the function
fr(x, x0) above and the vertex set of P̃, is equal to the area between A and the vertical
line at distance r to the right of v. Hence |S \ R| = |A| + |B| − hr. The probability that
a vertex is the rightmost vertex of a good component is obtained by integrating EP ′e−|A|

over all valid choices of γC ∪ {v}.
Now restrict these choices to those for which the right boundary of A stays within π

3
of

vertical. (Note that whether or not the right boundary of A stays within π
3
of vertical is

determined by γRC . Indeed, the only points of A that can be affected by P ′ ∪ {v} \ γRC are
those that are very close to ∂Sh, and ∂A is always within π

3
of vertical here.) Conditioned on

the presence of vertices corresponding to those of the transformed γRC∪{v} in [0, z]×[0,∞],
the probability that the region corresponding to S \R is empty is Ee−|S\R| = Ee−|A|−|B|+hr.
Now in the formula (18) defining εfr(x), this event contributes ze

|B|. Thus the contribution
to z−1εfr(z)e

−hr is just Ee−|A|. Integrating over all choices of γRC ∪ {v} for which the
original excluded area A could have right boundary within π

3
of vertical gives that the

probability that v is the rightmost vertex of a good component which is followed by an
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almost rectangular break is at most z−1εfr(z)e
−hr.

Conversely, consider a configuration P contributing to z−1εfr(z)e
−hr. Suppose that√

3
2
r ≤ h ≤ δr2. We first show that we can restrict our attention to P for which the

upper boundary of B has slope at most r2/3 tan π
6
. Indeed, for sufficiently small δ, c1z −

c2(r
2/3 tan π

6
)3 ≤ c1δr

5/3 − c2√
27
r2 ≤ −c′r2, where c1 and c2 are the constants given by

Lemma 15. Thus by Lemma 15, the remaining configurations contribute a fraction at
most e−c

′r2 = O(hr−5/3) to this expression. Scaling and rotating back to the Sh picture,
the vertices of P defining the right boundary of A are within distance r of each other (or
r
2
from the boundary of Sh). Thus they form a crossing sensor-path. As this is automatic

when h <
√
3
2
r, such a configuration is in the image of the mapping above. Thus the

probability that a vertex is the rightmost vertex of a good component is

z−1εfr(z)e
−hreO(hr−5/3). (33)

A simple calculation shows that for r ≥ r0

1
2
(x− x0)

2 ≤ fr(x, x0) ≤ (1− ( r0
r
)4/3)1

2
(x− x0)

2 + ( r0
r
)4/3fr0(x, x0).

Indeed, the second inequality follows from the convexity of ηr(x, x0) (defined in (35) below)

as a function of r−4/3 ∈ [0, r
−4/3
0 ], followed by integration of (34).

Write Br for the region B used in the definition of εfr(z), and B∞ for the limit as
r → ∞, which gives the region B used in the definition of ε(z). We have, using r0 = 7,

|B∞| ≤ |Br| ≤ (1− (7
r
)4/3)|B∞|+ (7

r
)4/3|B7|.

Now in general for bounded random variables X and Y , Hölder’s inequality gives that

E(e(1−ε)X+εY ) ≤ (EeX)1−ε(EeY )ε.

Thus, with X = B∞ and Y = B7, we deduce that

ε(z) ≤ εfr(z) ≤ ε(z)(εf7(z)/ε(z))
(7/r)4/3 .

Now
∂

∂x
fr(x, x0) = (x− x0)ηr(x, x0), (34)

where
ηr(x, x0) = (1− r−4/3(x− x0)

2)−1/2 (35)

satisfies 1 ≤ ηr(x, x0) ≤ 2 for all |x − x0| ≤ 2 and r ≥ 7. Thus εf7(z)/ε(z) = eO(z) by
Lemma 16. Hence we have

εfr(z) = ε(z)eO(z(7/r)4/3) = ε(z)eO(hr−5/3).
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The theorem follows for h ≤ max{δr2,
√
3
2
r}, since there are h vertices per unit length along

the strip and so Ih,r = hz−1εfr(z)e
−hr+O(hr−5/3) = r1/3ε(z)e−hr+O(hr−5/3).

For h > max{δr2,
√
3
2
r}, we use Lemma 25 to reduce inductively to the case h ≤

max{δr2,
√
3
2
r}. Choose k ∈ N minimal so that h0 = h/2k ≤ max{δr2,

√
3
2
r}. By induction

on k, Lemma 25 implies that

(c/r)2
k−1I2

k

h0,r
≤ Ih,r ≤ (200h0)

2k−12−kI2
k

h0,r
.

As h0 = Θ(r2) we have

Ih,r = I2
k

h0,re
O(2k log r) = r2

k/3ε(z/2k)2
k

e−2kh0r+O(2kh0r−5/3)+O(2k log r).

But z/2k = h0r
−1/3 = Θ(r5/3) is bounded away from zero. Thus by Theorem 3 we have

ε(z/2k)2
k
/ε(z) = exp(O(2k)). Hence

Ih,r = r1/3ε(z)e−hr+O(hr−5/3)+O(2k log r).

However, the O(hr−5/3) absorbs the O(2k log r) = O(h(log r)/r2) term, giving the result.
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Figure 16: Plots of log(Ih,r) against h for various values of r. Dotted lines indicate the
approximation r1/3ε(hr−1/3)e−hr from Theorem 2.
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Figure 17: Plots of log(Ih,r) + αrh + βr against z = hr−1/3 for r = 3, 4, 6, 8, 16 (outer to
inner solid lines respectively). Dotted line indicates the estimate log ε(z)− αz − β. Here
αr and βr are as given in Table 1.

9 Simulation Results

In this section, we provide results of our simulations and compare them with our estimates.
The main result here is that our estimates are almost indistinguishable from that observed
in simulations for large r, and there is good agreement even for r significantly less than 7.
All our simulations were sufficiently extensive so that statistical error bounds are not visible
in the graphs.

To calculate the function ε(z) in Figure 9, and to estimate the parameters α and β
in (29), three different algorithms were employed. The first and simplest used just the
definition of ε(z): points were repeatedly placed in [0, z]× [0, z2/2] according to a Poisson
process, and the area of the region B was calculated. The average value of ze|B| was then
computed.

The second algorithm was based on Lemma 17. Two instances of P were generated
for strips of width z/2 and ε(z) was calculated using (19). This algorithm was better at
estimating ε(z) than the first one for larger values of z. This is because the calculation of
ze|B| for large z is significantly affected by low probability events giving rise to large values
of |B|. This is difficult to estimate using simple Monte-Carlo methods. The formula in
Lemma 17 captures most of this effect in the integral, which can be calculated with high
accuracy. (If |B| is large, it is probably due to one half-strip having its lowest vertex very
high up.)

Finally, for small values of z one can use the Taylor expansion (30), which is quite
accurate for z < 1.

For most parameter values, more than one algorithm was used so as to check the
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r αr βr αest
r βest

r

1.25 0.0428[1] 3.6200[15] 0.0650 1.1773
1.5 0.3668[1] 1.6790[15] 0.4129 1.0732
1.75 0.7018[1] 1.2198[10] 0.7353 0.9927
2 1.0195[2] 1.0240[10] 1.0418 0.9273
2.5 1.6152[2] 0.8490[10] 1.6255 0.8253
3 2.1809[2] 0.7548[10] 2.1859 0.7474
4 3.2678[2] 0.6342[10] 3.2696 0.6316
6 5.3686[2] 0.4801[10] 5.3692 0.4787
8 7.4296[1] 0.3751[2] 7.4298 0.3749
16 15.5504[1] 0.1337[2] 15.5504 0.1337

Table 1: Estimates of αr and βr from simulations, together with the approximations given
by (38). Numbers in square brackets indicate approximate 1 standard deviation errors in
the last decimal place.

consistency of the different algorithms.
Our theoretical results strongly suggest that Theorem 2 can be strengthened to

Ih,r = e−αrh−βr+o(1), (36)

as h→ ∞, where

αr = r − αr−1/3 +O(r−5/3),

βr = −1
3
log r − β +O(r−4/3) (37)

as r → ∞. This does not quite follow from the above, since we may still have a O(log h)
error term in the exponent resulting from the inductive use of Lemma 25. We believe
however that this is just an artifact of the proof. Indeed, a O(log h) term would arise from
the factor of h on the right hand side of (31), which in turn comes from the O(h) bound
on the expected width of a break (Lemma 10) used in Lemma 25. In practice, one should

use the amount by which the breaks in S
(t)
h and S

(b)
h can be moved relative to one another

and still form a break in S2h. This should be O(1), and in particular should not depend
noticeably on h.

Figure 16 plots the logarithm of the frequency of breaks observed in simulations against
h for various values of r together with the estimate from Theorem 2. We observe that this
approximation provides an extremely good fit to the simulation data except when r is close
to the critical radius for the Gilbert model rc ≈ 1.1984 (see [14]). The network becomes
highly disconnected in this case, and so the analysis breaks down.
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We used two algorithms to estimate Ih,r. The first was to simply place points at random
in a long strip and count good components. We generated the random points in order of
their x-coordinate, and kept track of the changes in component structure as each point was
added. It is only necessary to record points and components within horizontal distance r
of the new point added, so the algorithm actually used very little memory, and the length
of strip that could be simulated was limited only by the run-time.

The second algorithm estimated the probability that a fixed point v chosen uniformly
at random in {0} × [0, h] is the rightmost vertex of a good component. To do this, points
were generated further and further to the left of v until the status of the components
containing points in [−r, 0] × [0, h] was determined (i.e., which vertices lay in the same
component C as v, and whether C was good). If C was good, the area A to the right of v
within distance r of any point of C was calculated. The probability that v is the rightmost
point of C conditioned on the process to the left of v is then just e−|A|.

The first method was effective when Ih,r was not too small, while the second was effective
provided r was not too close to rc. For many choices of parameters both algorithms were
used and results compared to check consistency between them.

The simulated values of αr do indeed appear consistent with (37) and (29). Using
simulations, one can estimate the error terms for αr and βr giving

αr ≈ αest
r := r − 1.12794r−1/3 − 0.20r−5/3

βr ≈ βest
r := −1

3
log r + 1.05116 + 0.27r−4/3 (38)

Note that the constants 1.12794 and 1.05116 are the constants α and −β from Theorem 3,
and only the last coefficients (0.20 and 0.27) were estimated from the simulation estimates
of Ih,r. From Table 1 one sees that the approximations in (38) are extremely good for
r ≥ 3, but get progressively less accurate for smaller values of r.

By comparison with Theorem 3, the o(1) term in (36) should be approximately equal to
log ε(z)−αz−β where z = hr−1/3. Figure 17 shows the values of this error term obtained
from simulations for r ≥ 3 (for r < 3 the error is much larger). Once again, the theoretical
result is very close to the results from simulations.
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