
Brooks’ Theorem

Recall that the greedy algorithm shows that χ(G) ≤ ∆(G)+1 for any graph G. Brooks’
Theorem extends this assertion.

Theorem 1. If G is connected, χ(G) ≤ ∆(G) unless G is complete or an odd cycle.

Proof. We may assume ∆ = ∆(G) ≥ 3, since the result is easy otherwise. Our proof
proceeds by induction on ∆, and, for each ∆, we will use induction on n. The induction
starts at n = ∆+1, and the theorem is true in this case, since if |G| = n+1 and G 6= Kn+1

we can colour G with ∆ colours by using the same colour for some two non-adjacent
vertices. Therefore, suppose n ≥ ∆ + 2.

Case 1. There is a vertex v such thatG−v is disconnected. Let the components ofG−v
be C1, . . . , Ct. Consider the graphs induced by G on the vertex sets C1∪{v}, . . . , Ct∪{v}.
We may ∆-colour each of these graphs by induction (if one of the graphs is complete or
an odd cycle, its maximum degree must be strictly less than ∆). Switching colours within
some of these colourings if necessary, we may assume that v gets colour 1 in all t colourings,
which we can therefore combine to get a ∆-colouring of G.

Case 2. G− v is connected for all v, but there are two non-adjacent vertices v and w
such that G − v − w is disconnected. You will understand the following argument better
if you draw some figures to illustrate it.

Let A be a component of G− v −w, and let B = V (G) \ (V (A) ∪ {v, w}). If there are
no edges from v to A, then G−w is disconnected, which we are assuming is not the case.
Therefore, there is at least one edge from v to A. Similarly, there is at least one edge from
w to A, at least one edge from v to B, and at least one edge from w to B.

Write G1 for the graph obtained from G by deleting B, and G2 for the graph obtained
from G by deleting A. It is tempting at this point to ∆-colour G1 and G2 by induction
and then combine the colourings, but it may not be possible to combine the colourings
(to see why, consider the case when G is an odd cycle). Instead, we note that, from the
above observations, v and w have degree at most ∆−1 in both G1 and G2, so that we may
∆-colour G3 = G1 +vw and G4 = G2 +vw by induction, unless one of them is complete (if
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either of them is an odd cycle, we can ∆-colour it since ∆ > 2). Such colourings, if they
exist, can be combined because v and w will be forced to have different colours in both of
them: we can then switch colours if necessary to ensure that v and w are coloured 1 and
2 respectively in both colourings.

If G3 is a clique on ∆ + 1 vertices, then each of v and w must have degree 1 in G2

(since both have degree ∆ in G3 and ∆ − 1 in G1). In G2, we can combine v and w into
a single vertex, obtaining a graph G5, which can be ∆-coloured by induction. Therefore,
there are ∆-colourings of both G1 and G2 in which both v and w get the same colour.
These colourings can be combined to provide a ∆-colouring of G.

Case 3. G− v−w is connected for every pair of non-adjacent vertices v and w. Select
a vertex u of maximum degree ∆. Since G 6= Kn, some pair of neighbours v and w of u
are not adjacent. We define v1 = v, v2 = w, vn = u and, working backwards from vn−1 to
v3, we ensure that each vi has some neighbour among {vi+1, . . . , vn}: this is possible since
G− v − w is connected. Running the greedy algorithm with this ordering of the vertices,
we see that v1 = v and v2 = w both get colour 1, and also that we never need to use colour
∆ + 1 on v3, . . . , vn−1, since each such vi has only at most ∆ − 1 neighbours among the
already coloured vertices. Finally, when we come to colour vn, two of its ∆ neighbours
have received the same colour (1), so that one of the colours 1, . . . ,∆ is available to colour
vn itself. This completes the induction step.


