Brooks’ Theorem

Recall that the greedy algorithm shows that x(G) < A(G)+1 for any graph G. Brooks’
Theorem extends this assertion.

Theorem 1. If G is connected, x(G) < A(G) unless G is complete or an odd cycle.

Proof. We may assume A = A(G) > 3, since the result is easy otherwise. Our proof
proceeds by induction on A, and, for each A, we will use induction on n. The induction
starts at n = A+1, and the theorem is true in this case, since if |G| =n+1 and G # K, 11
we can colour G with A colours by using the same colour for some two non-adjacent
vertices. Therefore, suppose n > A + 2.

Case 1. There is a vertex v such that G—uw is disconnected. Let the components of G—v
be C1,...,C;. Consider the graphs induced by G on the vertex sets Cy; U{v},...,CiU{v}.
We may A-colour each of these graphs by induction (if one of the graphs is complete or
an odd cycle, its maximum degree must be strictly less than A). Switching colours within
some of these colourings if necessary, we may assume that v gets colour 1 in all ¢ colourings,
which we can therefore combine to get a A-colouring of G.

Case 2. G — v is connected for all v, but there are two non-adjacent vertices v and w
such that G — v — w is disconnected. You will understand the following argument better
if you draw some figures to illustrate it.

Let A be a component of G —v —w, and let B =V(G) \ (V(A) U {v,w}). If there are
no edges from v to A, then G — w is disconnected, which we are assuming is not the case.
Therefore, there is at least one edge from v to A. Similarly, there is at least one edge from
w to A, at least one edge from v to B, and at least one edge from w to B.

Write Gy for the graph obtained from G by deleting B, and G5 for the graph obtained
from G by deleting A. It is tempting at this point to A-colour G; and G2 by induction
and then combine the colourings, but it may not be possible to combine the colourings
(to see why, consider the case when G is an odd cycle). Instead, we note that, from the
above observations, v and w have degree at most A —1 in both GG; and G, so that we may
A-colour G3 = G; +vw and G4 = G2+ vw by induction, unless one of them is complete (if
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either of them is an odd cycle, we can A-colour it since A > 2). Such colourings, if they
exist, can be combined because v and w will be forced to have different colours in both of
them: we can then switch colours if necessary to ensure that v and w are coloured 1 and
2 respectively in both colourings.

If G3 is a clique on A + 1 vertices, then each of v and w must have degree 1 in G,
(since both have degree A in G3 and A — 1 in Gy). In Gy, we can combine v and w into
a single vertex, obtaining a graph G5, which can be A-coloured by induction. Therefore,
there are A-colourings of both G; and G5 in which both v and w get the same colour.
These colourings can be combined to provide a A-colouring of G.

Case 3. G —v —w is connected for every pair of non-adjacent vertices v and w. Select
a vertex u of maximum degree A. Since G # K,,, some pair of neighbours v and w of u
are not adjacent. We define v; = v, v, = w, v, = u and, working backwards from v,,_; to
v3, we ensure that each v; has some neighbour among {v; 1, ...,v,}: this is possible since
G — v — w is connected. Running the greedy algorithm with this ordering of the vertices,
we see that v1 = v and v = w both get colour 1, and also that we never need to use colour

A+ 1on vs,...,v, 1, since each such v; has only at most A — 1 neighbours among the
already coloured vertices. Finally, when we come to colour v,, two of its A neighbours
have received the same colour (1), so that one of the colours 1,..., A is available to colour

v, itself. This completes the induction step.
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