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Recall that the Turan number ex(n, F) of a graph F is the
maximum number of edges in an F-free graph on n vertices.

Turan’s theorem:

n2

exln k) = (1= 25 +om) 5

Erdés-Stone theorem:

ex(n, F) = (1 - X(F;_l 4 o(l)> ”22

where x(F) is the chromatic number of F.

The extremal graphs F are Turdn graphs, i.e., complete
multipartite graphs.
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Generalization: Write N(G, H) for the number of copies of a
(small, fixed, unlabelled) copy of G in a large graph H. If we fix the
edge-density e(H)/ (%) of H, which graphs H minimize N(G, H)?
Hard

G bipartite: Sidorenko conjectured that H should be quasirandom.

G = K,: Reiher proved that H should be close to a Turdn graph.

C. Reiher, The clique density theorem, Annals of Mathematics 184
(2016), 683-707.

r =3 Razborov (flag algebras)

r =4 Nikiforov
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Instead: For fixed (small, unlabelled) G, and large H of fixed
edge-density, how do we maximize N(G, H)?

Only solved for a few small graphs G, and two families of graphs.
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ex(n, e, G) = max{N(G,H) : |[H| = n,e(H) < e}

Given n and e < (g) write e = (;) + b, where 0 < b < a. The
quasi-clique K¢ is a clique on a vertices, together with an additional
vertex joined to b vertices of the clique, and n—a—1 isolated vertices.
The quasi-star S¢ is the complement of K¢, where e’ = (5) —e.

Theorem (Ahlswede and Katona 1978)

Let P, be the path with two edges. Then

ex(n, e, Po) = max(N(P2, S5), N(P2, K5)).

The asymptotic maximizer is first a quasi-star and then a
quasi-clique, with the switch occurring at edge-density 1/2.
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Theorem (Ahlswede and Katona 1978)

ex(n, e, P2) = max(N(P2, S;), N(P2, K5)).

The asymptotic maximizer is first a quasi-star and then a
quasi-clique, with the switch occurring at edge-density 1/2.

Quasi-star S5 Quasi-clique K5
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Theorem (Alon 1981)

Let G be a graph on v vertices. Then, as n — oo with 3 = 2e/n?
fixed,

ex(n, e, G) = N(G, K)(1 + o(1)) & a*(G) = v/2

where a*(G) is the fractional independence number of G.

a*(G) = v/2 if and only if G has a spanning subgraph consisting
of vertex-disjoint edges and cycles (e.g. paths with an odd number
of edges, cycles, hamiltonian graphs).

Profile for K3

Quasi-clique Ky
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Theorem (Nagy 2017)

Let P4 be the path with 4 edges. Then, as n — co with 3 = 2e/n?
fixed,

ex(n, e, Ps) = max(N(Pa, S5), N(Pas, K5))(1 + o(1)).

The asymptotic maximizer is first a quasi-star and then a
quasi-clique, with the switch occurring at § = 0.0865.. ..

Quasi-star S¢ Quasi-clique K¢ N(n,e, Py)
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Theorem (Nagy 2017)
Let Py be the path with 4 edges. Then, as n — co with 3 = 2e/n? fixed,

ex(n, e, Ps) = max(N(Pa, S5), N(Pa, K5))(1 + o(1)).

Definition
Let A:[0,1)2 — [0,1] be integrable with A(x,y) = A(y, x) and let

1 1 1
Ux) = A(x,y)dy and S(A)= Z(X)E( ) min(£(x), £(y) dxdy.
Quasi-star S¢ From Nagy's paper Quasi-clique K¢
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Theorem (Reiher and Wagner 2018)

Let Sk be the star with k edges. Then, as n — oo with 5 = 2e/n2
fixed,

ex(n, e, Sk) = max(N(Sk, S5), N(Sk, K5))(1 + o(1)).
2 < k < 30: Kenyon, Radin, Ren and Sadun (2017)

Quasi-star S¢ Quasi-clique K¢ N(n, e, Sk)
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Question (Nagy 2017)

Does there exist, for each graph G, a threshold 5¢ < 1 such that,
for 3> B¢, and as n — oo with B = 2e/n? fixed,

ex(n, e, G) = N(G, K)(1 + o(1)).

Yes (Gerbner, Nagy, Patkds, Vizer 2018+)
Theorem (Reiher and Wagner 2018)

Let Sk be the star with k edges. Then there exists 8 < 1 such
that, for 8 > (i, and as n — oo with 3 = 2e/n2 fixed,

ex(n, e, Sk) = N(Sk, K3)(1 + o(1)).
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Question (Nagy 2017)

Is it true that, for each graph G,

ex(n, e, G) = max(N(Sk, Sy;), N(Sk, K5))(1 + o(1)).

More specifically, is every graph of type K or SK?

S

Type K Type SK
No (Day and S. 2019+)



Given a graph G, a function ¢ : V(G) — [0, 1] such that ¢(u) +
¢(w) <1 for all uw € E(G) is known as a fractional independence
weighting of G.

The fractional independence number of G, written a*(G), is defined

as the maximum of >, gy ¢(u) over all fractional independence
weightings of G.

Theorem (Nemhauser and Trotter 1974)

Every graph G has a maximal weighting (one that realizes o*(G))
in which all the weights are either 0,1/2 or 1.

v
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Fix a labelling G; of G; then N;(G;, H) = N(G, H)|AutG|.
Definition

A graph homomorphism from G, to H is a map f : V(G)) — V(H)
such that f(u)f(w) € E(H) for all uw € E(Gj). We write
hom(Gy, H) for the number of homomorphisms from G, to H.

Definition

|

Given a family of graphs (H,)n>1 such that |V(H,)| = n, we define
the homomorphism density t(Gj, H,) by the formula
€(Gy, Hy) = tim MG Hn) i hom(Gi, Hn)

n—o00 nv n—o0 nv

A\
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S, T3 (q)
¥2| = v/Fan

R [Rr| = (1 - VT= B - @)n

|Br| = (v/T= B0 =) — VBa)n

IRs| = (1 - yT=B)n

|Bs| = yT=Pn

5S¢ and TE(q)

Quasi-star S; T2(q)
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t(Ps, S5) = CB?
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12 0
12 1

Oé*(Gs) = 7/2

t(Gs, T5(q)) = CA°2
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|Rs| = (1 - T=5) |Yr| = V/Ban
\BS\ \/7V [Re|=(1- T=B(T=¢)n
) |Br| = (V1= B(1 =) ~ VBa)n

S¢and TE(q

As 3 — 0,
e t(Gy, K;) is determined by v/2
e (G, S?) is determined by a(G)
e t(G;, T5(q)) is determined by a*(G)
So, if a*(G) > max(v/2,a(G)), then
t(G1, T7(q)) >> max(t(Gy, S7), t(G, K7))

as  — 0, and thus Nagy's conjecture is false for G.
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sl = (1 — [Yr| = VBan
7 Rp 1T-501
|Bs| = yT—Bn Vol = Y
|Br| = (y/1-5801-¢)

S¢ and TE(q

Theorem (Day and S. 2019+)

Let G; be a labelled graph on v vertices with no isolated vertices.
Fix g € (0,1), and let 3 — 0. Then there exist constants C; =
Gi(Gi,q) > 0and G = G(G) > 0 such that the following all hold:
o t(G, K) =2
. t(G, T (9) =G (/3“‘*(6) +0 (BV—“*<G>+%))

] t(G/,S,?) G (IBV o +O(/BV ol +1))
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Theorem (Day and S. 2019+)

Let G, be a labelled graph on v vertices with no isolated vertices.

Fix g € (0,1), and let 8 — 0. Then there exist constants C; =

C1(Gy,q) > 0 and G, = G(G)) > 0 such that the following all hold:
. t(G,Kg) =p2

o (G, T (9) = G <BV“’*(G) +0 (5v—a*<c>+%))

e t(G,S5) =G (ﬂ" & —i—O(ﬁ" el +1))

Theorem (Janson, Oleszkiewicz, Ruciriski 2004)

Let G be a graph on v vertices with fractional independence number
a*(G). Then, with 8 = 2e/n?,

N(n,e, G) = ©(n’Bv~"(€)),

Lower bound: separate construction for each G
Upper bound: LP duality, Shearer's Lemma
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K
T
s T S//
Type K Type SK Type TK Type STK
Is every graph of type K, SK, TK or STK? \

Just comparing the families K5, S5 and T5(q):
is every graph of type K, SK, TK or STK?

Is G of type TK?
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Connected graphs on 3 vertices alG)  a'(G) Type Proof

A 1
/\ 2 2 SK « Ablswede, Katona

Connected graphs on 4 vertices

PSS 0w
3 3 SK ® Kenyon, Radin, Ren, Sadun

Connected graphs on 5 vertices

K o Alon, (Kruskal, Katona)

@ ! 2 K « Alon, (Kruskal, Katona)
Wt N
@ @ 6 W 2 3 K o Alon

3 3 SK or STK e Lemma 2 + Corollary 3
6 ,ﬁ ,7? (assuming Conjectures 1 and 2)
O 3 3 SK o Nagy
4 4 SK « Kenyon, Radin, Ren, Sadun
« Riher, Wagner
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K K
K
T
s T s
Type K Type SK Type TK Type STK

Question 4
Are there any graphs of type STK?
For each G, is gmax(G, ) is an increasing function of 57 \

Question 6
As B8 — 0, is every graph of type S, T or K?
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Thank you for your attention!
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