
Connectivity of a Gaussian
Network

P. Balister
Department of Mathematical Sciences,
University of Memphis, Memphis TN 38152, USA
E-mail: pbalistr@msci.memphis.edu

B. Bollobás
Department of Mathematical Sciences,
University of Memphis, Memphis TN 38152, USA
E-mail: bollobas@msci.memphis.edu
and
Trinity College,
University of Cambridge, Cambridge CB2 1TQ, UK

A. Sarkar*
Department of Mathematics,
Western Washington University, Bellingham WA 98225, USA
E-mail: amites.sarkar@wwu.edu
* Corresponding author

M. Walters
Peterhouse,
University of Cambridge, Cambridge, CB2 1RD, UK
E-mail: mjw1009@cam.ac.uk

Abstract: Following Etherington, Hoge and Parkes, we consider a network consisting
of (approximately) N transceivers in the plane R

2 distributed randomly with density
given by a Gaussian distribution about the origin, and assume each transceiver can
communicate with all other transceivers within distance s. We give bounds for the
distance from the origin to the furthest transceiver connected to the origin, and that
of the closest transceiver that is not connected to the origin.

Keywords: Wireless sensor network; Gaussian distribution; Transceiver; Gilbert
model; Continuum percolation.
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1 INTRODUCTION

In 1961, E.N. Gilbert defined and studied the following
model of a random geometric graph, known as the disc
model or Gilbert model (4). Let P be a Poisson process
in the plane of intensity one, and join every point of P to
every other point of P within distance r, for some fixed
r > 0. For small r, most points are isolated, that is, not
connected to any other points. However, as r increases, the
points form small connected clusters, which then connect
up to each other (as r increases still further), eventually
forming a (connected) giant component, which contains a
positive fraction of points in any large region. Loosely
speaking, Gilbert derived upper and lower bounds for the
smallest value of r such that the probability of the last
eventuality (also known as percolation) is one.

In recent years there has been renewed interest in such
graphs, which are now being used to model sensor net-
works and wireless ad-hoc networks in general. However,
for some applications, it is desirable that the initial dis-
tribution of sensors is non-uniform. One such model was
recently proposed by Etherington, Hoge and Parkes (3), in
which the locations of the sensors are modeled as a Pois-
son process whose intensity is given by a two dimensional
Gaussian distribution. Such a network might arise, for in-
stance, if the sensors were dropped from an aircraft.

Specifically, Etherington, Hoge and Parkes defined the
following random geometric graph G = G(N, σ, s). We
start with a Poisson process in R

2 with intensity at radius
r given by

ρ(r) = N
2πσ2 e−r2/2σ2

,

for some constant σ. In addition, place a point at the
origin, so that the expected total number of points is N+1.
Then connect each point to every other point at distance
less than s. We now ask two questions. First, what is the
largest value of r such that every point in Dr(0), the (open)
disc of radius r centered at the origin, is joined to every
other point of Dr(0)? Second, what is the smallest value
of r such that Dr(0) contains all the points of C = C(0),
the component of G containing the origin? (C(0) consists
of all the points of G that can be connected to the origin.)
Formally, we define

r− = sup{r : Dr(0) ∩ V (G) ⊆ V (C)},

and

r+ = inf{r : V (C) ⊆ Dr(0)}.

In this paper we derive lower and upper bounds for r−
and r+, for various ranges of values of s. Since r− and r+

are random variables, our bounds will only hold with high
probability (whp), that is, with probability tending to one
as N → ∞. By a uniform scaling of R

2, we may without
loss of generality fix σ2 = 1/2, so that the density of points
is given by

ρ(r) = N
π e−r2

.
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We imagine N to be very large, and consider various func-
tions s = s(N).

First we give a heuristic argument which yields the
asymptotically correct value of r− for a large range of val-
ues of s. Assuming that the density of points in a small
disc of radius s is approximately constant, the probability
that a point at distance r from the origin is an isolated
vertex in G can be approximated by

e−ρ(r)πs2

= e−Ns2e−r
2

.

Therefore, provided Rs ≪ 1, the expected number of iso-
lated vertices in DR(0) is approximately

∫ R

0

2Nre−r2

e−Ns2e−r
2

dr = s−2
(

e−Ns2e−R
2

− e−Ns2
)

. (1)

When R ≤ r−, there will be no isolated vertices in DR(0).
On the other hand, it seems reasonable to suppose, by
analogy with other similar problems, that the closest point
to the origin not belonging to C is, with probability tending
to one as N → ∞, an isolated vertex in G. Therefore we
may assume that if R > r−, there will be at least one
isolated vertex in DR(0). Consequently, if we choose R so
that the expected number of isolated vertices in DR(0) is
one, we might expect that r− ≈ R. Hence, if N−1/2 ≪
s ≪ (log N)−1/2,

r2
− ≈ log(Ns2/ log(1/s2)). (2)

One approach to proving rigorous bounds for r− is to ap-
ply methods and results for the related disc model Gs(A),
described above for the case A = R

2. Here, given a region
A ⊂ R

2, we consider a Poisson process of intensity one in
A, and join each point to all other points within a radius
s to obtain Gs(A). We have the following result of Gupta
and Kumar (5), which was proved for the square SN of
area N by Penrose (6).

Theorem 1. Let AN be a disc of area N , and let s =
s(N) satisfy πs2 = log N + ω(1). Then whp Gs(AN ) is
connected.

However, it turns out that applying this result yields
only the weak bound

r2
− & log(Ns2/ logN). (3)

A heuristic explanation is as follows. For the result of
Gupta and Kumar, the obstruction to connectivity is the
existence of isolated vertices, and it seems reasonable to
suppose that this is also true for our model. If we choose s
so that the probability that a vertex is isolated is o(N−1),
then the expected number of isolated vertices is o(1), so
whp there are no isolated vertices and (by the above fact)
whp Gs(A) is connected. For our model, even if we choose
r so that the probability that a vertex at distance r from
the origin is isolated is Θ(N−1), as in (3), then the only
vertices in Dr(0) which have probability Θ(N−1) of being
isolated lie very close to the boundary of Dr(0), and there



are far fewer than N such vertices. Consequently, it is
likely that r− is somewhat larger than suggested by (3),
and we will argue directly in the proof of Lemma 5 to show
that indeed (2) is much closer to the truth. Nevertheless,
we will use Theorem 1 in deriving a lower bound for r−
when s is very small.

Next we turn to r+. For the disc model Gs(R
2), with an

additional point at the origin, results from (2) (see also (4))
show that there is a critical density γ ≈ 4.512 so that if
πs2 < γ then C(0) (defined as above) is finite with proba-
bility one, while if πs2 > γ there is a non-zero probability
that C(0) is infinite. This suggests that whp

γ ≈ πs2ρ(r+) = Ns2e−r2
+ ,

so that whp

r2
+ = O(log(Ns2)), (4)

and we will show in Section 2 that in fact r2
+ = Θ(Ns2)

for a large range of values of s.
For Rs ≫ 1, the above arguments fail as the density of

points in a disc of radius s at distance R from the origin is
far from constant. Of particular interest is the value of s
for which G becomes connected. We show that this occurs
when

2s
√

log N ≈ log log N − 1
2 log log log N.

The main obstacle to connectivity is the presence of iso-
lated vertices that are among the furthest points from the
origin. These vertices are at distance R ≈

√
log N , so

Rs ≫ 1.

2 Precise results

Let rmin and rmax be the distance of the nearest (respec-
tively furthest) point from the origin.

Theorem 2. Define G = G(N, s), r− and r+ as above.
Then the following statements hold with high probability.

1. If 2s
√

log N ≥ log log N − 1
2 log log log N + ω(1) then

G is connected.

2. If 2s
√

log N = log log N − 1
2 log log log N + O(1) then

each of the following events has probability bounded
below by some positive constant:

(a) G is connected,

(b) G is connected except for the furthest point from
0 which is isolated,

(c) G is connected except for one isolated point that
is not furthest from 0,

(d) G has more than three components.

3. If 2s
√

log N ≤ log log N − 1
2 log log log N − ω(1) then

G is disconnected and r+ < rmax whp. Moreover, if

2s
√

log N ≤ C log log N for some C < 1 and Ns2 ≥
log N ,

r2
− = log(Ns2/ log(1/s2)) + 2s

√

log N

− 3
2 log max{1, s

√

log N} + O(1)

r2
+ = log(Ns2) + Θ((s

√

log N log log N)1/2)

+ O(1).

[If 2s
√

log N = o(1/ log log N), these simplify to

r2
− = log(Ns2/ log(1/s2)) + O(1)

r2
+ = log(Ns2) + O(1).]

4. If Ns2 = C log N for some constant C > 0 then

(a) if C > 1, r2
− = Θ(1),

(b) if C = 1, r2
− = (1 + o(1)) log log N/ log N ,

(c) if C < 1, r2
− = NC−1+o(1).

In all cases r2
+ = log(Ns2) + O(1) = log log N + O(1)

as above.

5. If Ns2 → ∞ then r−/s → ∞, while r2
+ = log(Ns2) +

O(1) as above.

6. If Ns2 = C > 0, then r−/s has a limiting distribu-
tion.

(a) If C > γ, where γ is the critical density for
disc percolation, then with positive probability
r2
+ = (1 + o(1)) log(C/γ). Conditional on this

not occurring r+/s has a limiting distribution.

(b) If C ≤ γ then r+/s has a limiting distribution.

In both cases there is a positive probability that r+ =
0.

7. If Ns2 = o(1) then whp the origin is isolated, so that
r− = rmin and r+ = 0.

Part 1 of the theorem is proved as part of Lemma 5 in
Section 2.1, and part 2 follows from the remarks following
the proof of Lemma 5. Part 3 is contained in Lemmas 5,
7, 8, and 9, except for the assertion relating to rmax, which
follows from the remarks following the proof of Lemma 5.
The remainder of the theorem is proved in Section 3.

3 General bounds

First we prove two easy bounds on rmax giving an idea of
the scale of this distribution.

Lemma 3. P(r2
max ≤ log N +α) = e−e−α

, so whp log N−
ω(1) < r2

max < log N + ω(1).

Proof. The number of points outside radius R is Poisson
distributed with mean Ne−R2

, and thus the probability
that there are no points further than R from the origin is
exp(−Ne−R2

). The result follows.



Next we prove some bounds on r−. Before we do this, we
first prove a simple lemma concerning the mean number of
points in a disc, which takes into account the variation in
density across the disc.

Lemma 4. Fix a point z of R
2 at distance r ≥ s from

the origin. Then the expected number Er,s of vertices of G
lying in Ds(z) is given by

Er,s = E|V (G) ∩ Ds(z)|
= Ne−(r−s)2f(r, s)θ(r, s)

where

f(r, s) = min
{

1
2 , s2, 1√

4π(r−s)
,
√

s
4π(r−s)3

}

and c ≤ θ(r, s) ≤ 1 for some c > 0 independent of r and s.

Remark. Numerical calculations show that we can take
c = 0.3055.

Proof. We can calculate the expected number exactly as

N

π

∫ +s

−s

∫

√
s2−x2

−
√

s2−x2

e−(r+x)2−y2

dy dx.

We can estimate
∫ z

−z
e−y2

dy = min{√π, 2z}θ1(z) where
0 < c1 ≤ θ1(z) ≤ 1. Writing x = −s + ε the above
expression becomes

N
π e−(r−s)2

∫ 2s

0

e−2(r−s)ε−ε2

m(ε, s)θ1(
√

2εs − ε2) dε,

where

m(ε, s) = min{
√

π, 2
√

2εs− ε2}.

We can bound the above integral by

∫ ∞

0

2
√

2εs e−2(r−s)ε dε =

√

πs

4(r − s)3
.

Since this integral is dominated by the contribution when
ε ∼ (r− s)−1, this will give the correct order of magnitude
when r−s ≫ 1, s−1, s. Similarly, we can bound the integral

by
∫ ∞
0

√
π e−2(r−s)ε dε =

√
π

2(r−s) , and this gives the correct

order of magnitude when s ≫ r − s ≫ 1. We can bound
the integral by

∫ ∞
0 e−ε2√

π dε = π
2 and this gives the right

order when s ≫ 1 ≫ r − s. Finally we can bound the

integral by
∫ 2s

0 2
√

2εs− ε2 dε = πs2, and this gives the
correct order when 1 ≫ s and s−1 ≫ r − s. Thus we have
bounded Er,s as required, and shown that the bound is of
the right order except on a compact region in R

2
+, where

the result follows by continuity (see Figure 1).

3.1 Bounds for r−

With the aid of Lemma 4, we can obtain fairly tight bounds
for r−.
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Figure 1: The function θ(r, s). Formulae shown are values
of the minimum in the expression in Lemma 4.

Lemma 5. Suppose that s = s(N) = o(1) and s ≥
√

(log N)/N . Then whp

r2
− ≥ log(Ns2/ log(1/s2)) + 2s

√

log N

− 3
2 log max{1, 3s

√

log N} − 3.

Moreover, if

2s
√

log N ≥ log log N − 1

2
log log log N + ω(1)

then G is connected whp.

Proof. For any point x at distance r ≥ s from 0, let the
region A(x) be the intersection of the ball Ds(x) and Dr(0).
Note that all of A(x) is closer to 0 than x is. Let ER be
the expected number of vertices x within R of 0 with no
points in the region A(x). If ER → 0 then whp r− ≥ R
since whp we can find a sequence of points joining any
point x ∈ DR(0) to 0.

Now |A(x)| ≥ |Ds(x)|/3, and since the density of points
is higher in A(x) than in Ds(x) \ A(x), E|V (G) ∩ A(x)| ≥
1
3Er,s. By Lemma 4, the probability that A(x) is empty is
at most

exp
(

− 1
3Er,s

)

≤ exp
(

−Nµe−(r−s)2
)

,

provided µ ≤ c
3 min

{

s2,
√

s
4π(r−s)3

}

, the other two terms

in the minimum in Lemma 4 being redundant when s =
o(1). For r < 3s we can take µ = c

3s2. Then

E3s ≤
∫ 3s

s

2Nre−r2

e−Nµe−(r−s)2

dr

≤
∫ 3s

s

2Nre−Nµe−4s
2

dr

≤ 8Ns2e−(c/3−o(1))Ns2

.



By assumption Ns2 → ∞, so E3s → 0. For 3s ≤ r ≤ R set
µ = c

3s2 min
{

1, (3Rs)−3/2
}

. Writing z = Nµe−(r−s)2 +
log µ + 2rs − s2 (note that z is decreasing in r) we have
dz
dr = −2(r − s)Nµe−(r−s)2 + 2s. Thus we have |dz

dr | >

rNµe−(r−s)2 provided r ≥ 3s and Nµe−(r−s)2 > 2. Then,
writing

z0 = Nµe−(R−s)2 + log µ + 2Rs− s2, (5)

we have

ER − E3s ≤
∫ R

3s

2Nre−r2

e−Nµe−(r−s)2

dr

≤
∫ ∞

z0

2µ−1e(r−s)2−r2−Nµe−(r−s)2

dz

=

∫ ∞

z0

2e−z dz = 2e−z0,

so it is enough that z0 → ∞, and

Nµe−(R−s)2 > 2. (6)

Set (R − s)2 = log(Nµ/ log(1/s2)) − α, α > 0. Then

Nµe−(R−s)2 = eα log(1/s2) > 2 for small s, and

z0 = (eα − 1) log(1/s2) + log(µ/s2) + 2Rs− s2.

Now log(µ/s2) = − 3
2 log max{1, 3Rs} + log(c/3), so

log(µ/s2)+2Rs is bounded below. Since α > 0 and s → 0,
we have z0 → ∞ as required.

If Rs > 1, then R2 = (1 + o(1)) log N , so log(µ/s2) ≥
− 3

2 log max{1, 3s
√

log N} − 2.5. Thus, taking α = 0.1,

R2 = log(Nµ/ log(1/s2)) + 2Rs− s2 − 0.1

≥ log(Ns2/ log(1/s2)) + 2s
√

log N

− 3
2 log max{1, 3s

√

log N} − 3,

and r− ≥ R since ER → 0. If Rs ≤ 1 then the same bound
applies since 2s

√
log N < 0.1 unless R2 = (1 + o(1)) log N .

For the last part, set R2 = log N + α where α is con-
stant. Assume 2s

√
log N = log log N − 1

2 log log log N +
β, where β → ∞, but β = o(log log N). Then
2Rs = (1 + o(1)) log log N , so µ = c′(2Rs)1/2R−2 =
Θ(

√
log log N/ log N). Thus z0 ≥ log µ + 2Rs − s2 = β +

O(1) → ∞. Similarly Nµe−(R−s)2 = elog µ+2Rs−α+o(1) =
eβ−α+O(1) → ∞. Hence r2

− ≥ log N +α whp for any fixed
α. Thus r− > rmax, so G is connected whp.

This establishes part 1 of Theorem 2. For part 2, sup-
pose that

2s
√

log N = log log N − 1
2 log log log N + β,

where we will initially suppose that β is constant. The
proof of Lemma 5 shows that there exists an α and C, de-
pending only on β such that ER ≤ C when R2 = log N +α.
Since the expected number of points at distance greater
than R from the origin is e−α, E∞ ≤ C′ for some con-
stant C′ ≤ C + e−α depending only on β. By dividing the

plane into, say, 10C′ sectors, we see that there is a large
probability that all the points in any one particular sector
can be connected to a point nearer the origin, since in any
one sector the expected number of points which can’t be
connected to a point nearer the origin is at most 0.1. Since
events in different sectors are almost independent, it fol-
lows (by, for example, the Lovász Local Lemma) that G is
connected with probability bounded away from zero. On
the other hand, let us estimate the probability p(α, β) that
a vertex at distance R is isolated, where R2 = log N + α
and α is constant. We have

p(α, β) = exp

{

−Ne−(R−s)2
√

s
4π(R−s)3 θ(R, s)

}

≥ exp
{

−c0Ne− log N−α+2Rs
√

s
R3

}

≥ exp
{

−c1e
−α+2s

√
log N

√
log log N
(log N)

}

≥ exp
{

−c2e
β−α

}

= c3.

Hence the probability that the furthest, or second furthest
point from the origin is isolated is bounded below by a
constant. Since these points are likely to be far from one
another, they are isolated almost independently. This, to-
gether with the first observation, establishes part 2. Fi-
nally, if β → −∞ with α fixed, we see that p(α, β) → 1
and so r+ < rmax whp, establishing the first statement of
part 3.

If s is not o(1) then G is connected, so r− = ∞ and
r+ = rmax. If s ≤

√

(log N)/N , the bound for r2
− in

Lemma 5 is negative, so trivially true. We shall show later
that in this case r− = o(1).

We call a point x ∈ V (G) isolated if Ds(x)∩V (G) = {x}.
Clearly any isolated point x 6= 0 cannot lie in V (C), so
must be at distance at least r− from 0. To obtain an upper
bound for r−, we follow the proof of Lemma 5 but instead
estimate E′

R, the expected number of isolated points within
distance R of 0. We require the following lemma.

Lemma 6. Let E′
R denote the expected number of isolated

points in G within distance R of 0. If E′
R → ∞ then

r− ≤ R whp.

Proof. First note that any two isolated points must be at
least distance s apart. Hence there is at most one isolated
point in any square of side length 2s/3. On the other hand,
the existence of isolated points in two such squares is in-
dependent if the squares are at distance at least 2s, since
the event that a square contains an isolated point depends
only on the process within distance s of that square. Tile
R

2 with squares Sij = [0, 2s/3]2 + (2si/3, 2sj/3). Parti-
tion this collection into 16 classes according to the value
of (i mod 4, j mod 4) ∈ Z

2
4. Let Xkl, k, l ∈ Z4 be the

number of isolated points within R of 0 and in one of the
squares in class (k, l). The Xkl are dependent, but still
∑

k,l EXkl = E′
R. Hence there is at least one Xk,l, say

Xk′l′ , with EXk′l′ ≥ E′
R/16. Now Xk′l′ is a sum of in-

dependent bernoulli random variables with mean pi, say.



Thus

P(Xk′l′ = 0) =
∏

i

(1 − pi) ≤
∏

i

exp(−pi)

= exp(−EXk′l′) ≤ exp(−E′
R/16),

so if E′
R → ∞, then whp there is an isolated point within

distance R of 0, and r− ≤ R whp.

Lemma 7. Suppose that s ≥
√

(log N)/N and also that
2s
√

log N ≤ (1 − ε) log log N for some ε > 0. Then whp

r2
− ≤ log(Ns2/ log(1/s2)) + 2s

√

log N

− 3
2 log max{1, 2s

√

log N} + log(2/ε).

Moreover, if

2s
√

log N ≤ log log N − 1

2
log log log N − ω(1)

then G is disconnected whp.

Proof. We estimate E′
R and use Lemma 6. The proba-

bility that x ∈ V (G) is isolated is at least exp(−Er,s) ≥
exp(−Nµe−(r−s)2), where µ = min{s2,

√

s
4πR′3 }, when x

is distance at least R′ + s from the origin. Hence

E′
R ≥

∫ R

R′+s

2Nre−r2

e−Nµe−(r−s)2

dr

=

∫ R−s

R′

2N(z + s)e−z2−2sz−s2

e−Nµe−z
2

dz

≥ e−2Rs

∫ R−s

R′

2Nze−z2

e−Nµe−z
2

dz

= e−2Rs
[

µ−1e−Nµe−z
2]R−s

z=R′

= µ−1e−2Rs
(

e−Nµe−(R−s)2 − e−Nµe−R
′2 )

.

Set (R − s)2 = log(Nµ/ log(1/s2)) − α, where α < 0 is
constant. Consider the case when s

√
log N = O(1) first.

Take R′ = 0, so µ = s2. Then E′
R ≥ e−2Rs−log(1/s2)(eα−1)−

s−2e−Ns2

. By assumption on s, s−2e−Ns2 ≤ 1/ logN → 0,
and Rs = O(1), so E′

R → ∞ when α < 0. Now as-
sume s

√
log N is large. Then R2 = (1 + o(1)) log N . Take

R′ = (1 − ε)R. Now Nµe−(R−s)2 = eα log(1/s2) → ∞.

Also eR′2

/e(R−s)2 = o(1), so log E′
R ≥ − log µ − 2Rs −

eα log(1/s2)+o(1) = (1−eα+o(1)) log log N−2Rs+o(1) ≥
(ε − eα + o(1)) log log N → ∞ for α < log ε.

Now, if (R − s)2 = log(Nµ/ log(1/s2)) − α then

R2 ≤ log(Ns2/ log(1/s2)) + 2s
√

log N

− 3
2 log max{1, 2s

√

log N} − α + o(1),

and r− ≤ R.

For the last part, set R2 = log N − α. Then log µ +
2Rs → −∞. Thus Nµe−(R−s)2 = elog µ+2Rs+α+o(1) → 0.

Therefore, using the approximation e−θ ≈ 1 − θ for small
θ,

E′
R ≥ (1 − o(1))µ−1e−2Rs(Nµe−R′2 − Nµe−(R−s)2)

= (1 − o(1))(elog N−R′2−2Rs − eα−s2

).

If R′2 = (1 − ε)R2, then log N − R′2 − 2Rs = ε logN +
O(log log N) so E′

R → ∞ as required. Since this holds for
all α > 0, r− < rmax and G is disconnected whp.

This completes the proof of the estimate for r− in part
3 of Theorem 2.

3.2 Bounds for r+

Now we turn our attention to r+. In this case we are
interested in the existence of at least one point at distance
R which is joined to the origin.

Lemma 8. Suppose that 2s
√

log N ≤ log log N and
r−/s → ∞ whp. Then, whp,

r2
+ ≥ log(Ns2) + 1

2

√

s
√

log N log log N

+ O(s
√

log N + 1).

Proof. First assume s
√

log N log log N = O(1). Then the
statement reduces to r2

+ ≥ log(Ns2) + O(1). Consider the
disc DR(0) where R is given by

R2 = log(Ns2) − 3.

The Poisson process restricted to DR(0) stochastically
dominates a Poisson process in DR(0) with constant in-
tensity ρ(R). Cover the disc with a square tessellation
where the squares have side length s/

√
5. The number

of points inside any of the squares which are wholly in-
side DR(0) dominates a Poisson distribution with mean
λ = ρ(R)s2/5. Substituting for ρ and R we get

λ = N
5π e−R2

s2 = e3

5π > 1.27.

The probability that any such square contains no points is
at most e−λ.

We compare this process to a site percolation on Z
2 by

declaring a site to be open if its corresponding square con-
tains at least one point. The site percolation dominates
our process in the sense that percolation in the site model
implies percolation in our model. Since 1 − e−λ > 0.7 >
pc(site) the probability that some square inside Dr−

(0) is
in an infinite component tends to one, and thus the prob-
ability that the origin in our process is in an infinite com-
ponent tends to one. Thus, whp, the origin is joined to
some point of the process at distance at least R − s from
the origin. Thus

r2
+ ≥ (R − s)2 ≥ R2 − 2Rs

≥ log(Ns2) − 3 − 2s
√

log N

≥ log(Ns2) + O(1)



SR R−1

S

Ai

Figure 2: Regions S and Ai in the proof of Lemma 8. The
discs shown have radius s/2, so that discs corresponding to
adjacent vertices overlap. With high probability, at least
one of the columns of small (approximate) squares contains
a point in every square.

and the result follows.

Now assume s
√

log N log log N → ∞. We aim to show
that whp C(0) extends some distance beyond DR(0) in
at least one narrow sector, where R2 = log(Ns2) − 3
as before. By Lemma 5, R2 − r2

− = O(log log N), and
so R − r− = o(1). Divide DR(0) into sectors of angle
about 1/

√
log N . Consider the approximately square re-

gion formed by intersecting one of these sectors with an
annulus with radii R − 1 and R (see Figure 2). Subdivide
this region S into sectors of angle s/

√
5 log N and annuli

of thickness s/
√

5. The region is thus subdivided into ap-
proximately square regions of side length at most s/

√
5.

We aim to show that with a reasonable probability there
is a point in S∩C(0) at distance at least R−s/

√
5 from 0.

Each small square-like region contains at least one point
with probability at least p0 = 1−exp(−s2ρ(R)/5.1) > psite.
Moreover, points in any two adjacent squares are within
distance s, so are connected in G. Comparing this process
with a site percolation with probability p0, we see that
with positive probability there is a square near the centre
of S which is connected to the side r = R of S, and hence
there is a point within r− of 0 joined to a point at least
R − s/

√
5 of 0 in S.

Consider a sector of angle s/
√

5 logN containing such a
point. For i = 0, 1, 2, . . . let ri = R + (i − 1)s/

√
5. Let

Ai be the intersection of the sector with the annulus with
inner radius ri and outer radius ri+1. Suppose that k is
such that all the regions Ai for 1 ≤ i ≤ k contain at least
one point of the process. Then, for 0 ≤ i < k, points in
adjacent regions Ai and Ai+1 are adjacent in G, so we may
conclude that r+ is at least R + (k − 1)s/

√
5.

The density in the region Ai is at least ρ(ri+1). The
condition on s implies that R2 = (1 + o(1)) log N . Thus,
the area of the region Ai is at least s2/5.1. Hence, setting
λ0 = (s2/5.1)ρ(R), the expected number λi of points in Ai

satisfies λi ≥ λ0e
−αi where α = 2rk+1s/

√
5 (the definition

of R implies that λ0 = e3/5.1π + o(1) > 1.25).
The probability pi that Ai contains at least one point is

1−e−λi ≥ 1
ee−αi. Thus the probability that all the regions

Ai for 0 ≤ i ≤ k contain at least one point is at least

k
∏

i=1

pi ≥ exp(−α
(

k+1
2

)

− k).

If

k =
⌊

√

0.98(log log N)/α
⌋

− 1

then this probability is at least (log N)−0.49−o(1). (Note
that s

√
log N log log N → ∞ ensures that αk → ∞.) How-

ever we have at least R = Θ((log N)1/2) disjoint sectors so,
whp, at least one of the sectors satisfies this. Thus whp,

r2
+ ≥R2 + 2(k − 1)Rs/

√
5 ≥ log(Ns2)

+ 1
2

√

s
√

log N log log N + O(s
√

log N + 1).

Lemma 9. Suppose that s = o(1) and Ns2 → ∞. Then,
whp,

r2
+ ≤ log(Ns2) + 2

√

s
√

log N log log N

+ O(s
√

log N + 1).

Proof. Let the radius R be defined by πs2ρ(R) = 1/3. We
define a sequence of areas Ai. Let A0 be DR(0), and for
i ≥ 1 let Ai = DR+is(0) \ DR+(i−1)s(0). Let V1 = V ∩ A1

and for i ≥ 2 let Vi be the vertices in Ai joined to a vertex
in V1 wholly inside Dr+is(0).

We want to bound the size of Vi. Let Wi be the points
in Ai that are neighbours of vertices in Vi−1. Now, since
the density in Ai+1 is bounded above by ρ(R+ is) we have

E(|Wi+1| | |Vi|) ≤ πs2ρ(R + is)|Vi|.

Also, any vertex in Vi is either in Wi or is a descendant
of a vertex in Wi. Moreover any vertex in Vi \ Wi has an
ancestor in Wi which can be reached from this vertex by a
path using no vertex of any Vj for j < i. Note that these
vertices may lie in Aj for j < i but cannot lie in A1 or A0.
However the expected number of descendants of a vertex



in Wi which can be reached wholly outside DR(0) is at
most

∑∞
j=1 3−j = 1/2. Hence

E(|Vi| | |Wi|) ≤ 3
2 |Wi|.

Combining these we see that, substituting for R,

E(|Vi+1| | |Vi|) ≤ 3
2πs2ρ(R + is)|Vi| ≤ 1

2e−2Ris|Vi|.

Also |V1| is at most the number of points outside DR(0),
which is dominated by a Poisson distribution with mean
1

3s2 . Hence

E(|Vj |) ≤ 2−(j−1) exp(−2Rs
(

j
2

)

) 1
3s2 .

Thus if
j =

⌈

√

(Rs)−1 log(1/s2)
⌉

+ 1

then E(|Vj |) ≤ 2−je−Rs (using 2
(

j
2

)

≥ (j − 1)2 + 1 for
j ≥ 2). Now since s = o(1), (Rs)j2 → ∞. Thus either j
or Rs is large and so E(|Vj |) = o(1). Therefore whp r+ ≤
R + js, so that whp r2

+ ≤ log(Ns2) + 2jRs + O(1). The
result follows since we may assume log(1/s2) ≤ log log N
and R ≤

√
log N .

This completes the proof of the estimate for r+ in part
3 of Theorem 2.

Corollary 10. If s = o(log log N/
√

log N) and Ns2 → ∞,
then whp

r2
max − r2

+ ≥ (1 + o(1)) log(1/s2).

Proof. From Lemma 9, we have whp

r2
+ ≤ log N − log(1/s2) + 2

√

s
√

log N log log N

+ O(s
√

log N + 1)

≤ log N − log(1/s2) + o(log log N).

Thus for any ε > 0, whp r2
+ + (1− ε) log(1/s2) = log N −

ω(1). The result now follows from Lemma 3.

4 Small s

The results we have proved so far say very little about the
case Ns2 = O(log N). In this section we address this case.

Lemma 11. Suppose that R is such that πR2ρ(R) → ∞,
Ns2 = O(log N), and

Ns2e−R2 − log N − log R2 → ∞. (7)

Then, whp, G|DR(0) is connected.

Proof. The process restricted to DR(0) stochastically dom-
inates a Poisson process of mean ρ(R). The expected
number of points of the Poisson process inside the disc
is πR2ρ(R).

The hypotheses of the theorem imply that R = O(1)

(since if R → ∞ then eventually Ns2e−R2 − log N −

log R2 < − 1
2 log N − logR2 → −∞), so that ρ(0) ≤ Cρ(R)

for some constant C. We modify the original process inside
DR(0) by keeping points of the process at distance r ≤ R
from the origin with probability ρ(R)/ρ(r). Then the mod-
ified process has density exactly ρ(R) in DR(0). Denote
by G′ the graph obtained from the modified process by
joining two points at distance less than s.

Now suppose that H = G|DR(0) is not connected. Then
H will contain two vertices v1 and v2 which are not joined
by a path in H . These vertices will be in H ′ = G′|DR(0)

with probability at least 1/C2, and they will certainly not
be joined by a path in H ′. Hence if H is not connected with
probability at least p infinitely often as N → ∞, then H ′

is not connected with probability at least p/C2 infinitely
often as N → ∞. Thus if H ′ is connected whp, H is also
connected whp.

Provided that πR2ρ(R) tends to infinity as N tends to
infinity, we can apply Theorem 1 to see that H ′ is con-
nected, whp, if πs2ρ(R) ≥ log(πR2ρ(R)) + ω(1). Substi-
tuting for ρ(R) and rearranging gives the result.

Corollary 12. Suppose C > 1 and Ns2 = C log N . Then
whp

r2
− ≥ log C − o(1).

Proof. Fix α > 0 with α < log C. Substitute R2 = log C −
α > 0 in (7). Then πR2ρ(R) → ∞ and the left hand side
of (7) becomes

eα log N − log N − log R2 = (eα − 1) logN + O(1)

which tends to infinity.

Lemma 13. If Ns2 < (1 − ε) log N and Ns2 → ∞ then
whp

r2
− = N−1 exp{Ns2(1 + o(1))}.

Proof. First we prove r2
− ≤ N−1 exp{Ns2(1 + o(1))}. Let

R2 = N−1 exp{Ns2(1 + δ)}. Then if 0 < δ < ε, R = o(1)
and the expected number of isolated points in DR(0) is at
least

N(1 − e−R2

) exp{−Ns2} ≥ 1
2NR2 exp{−Ns2}

= 1
2 exp(δNs2) → ∞.

The result follows from Lemma 6.
To prove r2

− ≥ N−1 exp{Ns2(1 + o(1))}, let R2 =
N−1 exp{Ns2(1 − δ)} and apply Lemma 11. Then
πR2ρ(R) → ∞ and we have

Ns2e−R2 − log(NR2) =Ns2(1 − o(1)) − Ns2(1 − δ)

+ o(1) → ∞.

The result follows, since if G|DR(0) is connected then r− ≥
R.

Lemma 14. If Ns2 = log N then whp

r2
− = (1 + o(1))

log log N

log N
.



Proof. For the lower bound we use Lemma 11. Take R2 =
(1 − α) log log N/ log N for α > 0. Certainly πR2ρ(R) =

NR2e−R2 → ∞. Now

Ns2e−R2 − log N − log R2

≥ (e−R2 − 1) log N − log

(

(1 − α) log log N

log N

)

≥ −R2 log N − log(1 − α)

− log log log N + log log N

= α log log N + O(log log log N) → ∞

so that whp r− ≥ R.
For the upper bound, we use the proof of Lemma 7. Take

R2 = (1 + α) log log N/ logN for α > 0. We may assume
that (R − s)2 ≥ (1 + α

2 ) log log N/ log N . Choose θ such
that θ(1 + α

2 ) > 1 and assume that N is large enough that

e−(R−s)2 ≤ 1 − θ(R − s)2. Then with notation as in the
proof of Lemma 7, it is easy to see that there is an absolute
constant C such that

E′
R ≥ C

s2
e− log N ·e−(R−s)2

≥ CN

log N
e− log N ·e

−(1+ α

2 ) log log N

log N

.

Therefore,

log E′
R ≥

{

1 − e−(1+ α

2 ) log log N

log N

}

log N

+ log C − log log N

≥
{

θ(1 + α
2 ) log log N

log N

}

log N

+ log C − log log N

=
{

θ(1 + α
2 ) − 1

}

log log N + log C → ∞

and so whp r− ≤ R by Lemma 6.

The last three lemmas together establish part 4 of The-
orem 2. Part 7 is immediate, and for part 5, if Ns2 → ∞
then r−/s → ∞ by Lemma 13 and so Lemma 8 applies and
it together with Lemma 9 give r2

+ = log(Ns2)+O(1). Part
6 follows from standard results on branching processes: we
note only that if Ns2 = C > γ, where γ is the critical den-
sity for disc percolation, and if R2 = log C− log γ, then the
probability that the origin belongs to the giant component
in G|DR(0) lies strictly between 0 and 1, and, conditional
on this event occurring, r+ = (1 + o(1))R.

5 Conclusion

In this paper we have analyzed a model of a random ge-
ometric graph whose vertices are given by a Poisson pro-
cess of Gaussian intensity: two such vertices are connected
in the graph if they lie within distance s of each other.
We have given precise bounds for two parameters which,

loosely speaking, describe the width of the central com-
ponent of such a graph. It is our hope that some of our
methods will find application to other problems in this
area.
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