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Abstract—Imagine a sensor network consisting of base stations
scattered at random over a large circular region R. Suppose that,
in addition, R contains a smaller number of eavesdroppers, also
scattered at random. Now suppose that each base station b can
monitor a circular area whose radius is given by the distance
from b to the nearest eavesdropper e. What is the probability
that the entire region R can be monitored securely by the base
stations? Extending work in [14], we estimate this probability,
and thus provide detailed information on the maximum density
of eavesdroppers that can be accommodated, while preserving
complete coverage of R. From an engineering perspective, such
coverage guarantees a scheme by which mobile stations can roam
everywhere in R, and retain communication with a base station.
From a mathematical perspective, the results reveal a new and
surprising phenomenon, that the obstructions to coverage occur
on a wide range of scales.

I. INTRODUCTION

Imagine a sensor network consisting of base stations scat-
tered at random over a large region R. Suppose that R also
contains a smaller number of eavesdroppers, also scattered at
random. Now suppose that each base station b can monitor
a circular area whose radius is given by the distance from
b to the nearest eavesdropper e. (Such a radius is justified
by information-theoretic considerations – given b, e, and an
intended mobile receiver m, b can choose a positive rate of
transmission to m so that the secrecy capacity [9] is positive,
providing that the distance between b and m is less than that
between b and e.) We would like to know the maximum
density of eavesdroppers that can be accommodated, while
still guaranteeing that the entire region R can be monitored
securely by the base stations. This would enable a scheme by
which mobile stations could roam around everywhere in R,
and always be reached securely by a base station; in such a
scheme, the downlink is intrinsically secure, while the uplink,
from the mobile to the base station, has to be secured by
transmission of a one-time pad via the downlink.

In the case where the base stations are nodes of a com-
munications network (rather than a sensor network), such
considerations lead to the definitions of various types of
secrecy graph [5], and the practical question of whether long-
range communication is possible in the network translates to
the mathematical question of whether percolation occurs in
the graph. There has been much work on such questions, often
using more elaborate physical layer models [13]. However, our
question here has a somewhat different flavor, and concerns
coverage rather than percolation.

We return to our original problem, which we model as
follows. To eliminate boundary effects, we assume that the
base stations and eavesdroppers form independent Poisson
point processes in the plane. Specifically, let P and P ′ be
independent Poisson processes, of intensities 1 and λ respec-
tively, in R2. We will call the points of P black points (base
stations) and the points of P ′ red points (eavesdroppers). Place
an open disc D(p, rp) of radius rp around each black point
p ∈ P , where rp is maximal so that D(p, rp) ∩ P ′ = ∅.
In other words, rp, the distance from the black point p to
the nearest red point p′ ∈ P ′ to p, is the radius of the disc
D(p, rp) that can be monitored by the base station at p. (The
eavesdropper p′ is almost surely unique.) We thus obtain a
random set Aλ ⊂ R2, the union of discs centered at the points
of P , which models the region that can be monitored by the
base stations. Now let Bn ⊂ R2 be a fixed disc of area n,
and set Aλ(Bn) = Aλ ∩ Bn. Write Bλ(n) for the event
that Aλ(Bn) covers Bn (except for the points of P ′), and
set pλ(n) = P(Bλ(n)), the probability of complete coverage.
Our aim is to estimate pλ(n). Since adding red points makes
coverage less likely, pλ(n) is a non-increasing function of λ,
for fixed n. In addition, pλ(n) is non-increasing in n, with
λ fixed, because increasing n corresponds to examining the
random set Aλ over a larger area.

This model was defined and studied in [14] (see also [6]),
where it was proved that if λ3n → ∞ then pλ(n) → 0, while
if λ3n(log n)3 → 0 then pλ(n) → 1. In this paper, we prove
that the correct indicator of coverage is f(λ, n) = λ3n log n;
if f(λ, n) → ∞ then pλ(n) → 0, while if f(λ, n) → 0
then pλ(n) → 1. Interestingly, the proofs indicate that there
are obstructions on a range of scales; it seems that, close to
the coverage threshold, there will be small uncovered regions
whose widths range from around 1 to just above n−1/6.

It is interesting to compare the results in this paper with
those of the now classical Gilbert model. Here, we place discs
of radius r in R2 so that their centers form a Poisson process
of intensity 1, and again let Bn ⊂ R2 be a disc of area n ≫ r2.
Once more, we ask for the probability that Bn is covered by
the small discs. This question, inspired by biology [11], has
a long history. Many detailed results are known about it [4],
[7], [10], [8], [12]. For instance, writing

πr2 = log n+ log log n+ t,

Svante Janson proved in 1986 [8] that coverage occurs with
probability asymptotically e−e−t

, as n → ∞. One approach



to this result [2], [3] uses the fact that the obstructions to
coverage are small uncovered regions, which essentially form
their own Poisson process, of intensity e−t/n. Although these
uncovered regions may be of different shapes, they are all
roughly the same size. In our variant of the problem, the disc
radii are no longer independent, and there are many different
obstructions of many different sizes.

Let us note that the problem of determining the covered
volume fraction of Aλ, which can be defined as fλ = P(O ∈
Aλ) (where O is the origin), was solved in [14]. The result is
that

fλ = 1−
∫ ∞

0

f(t)e−t/λ dt,

where f(t) is the (currently unknown) probability density
function for the volume of the cell containing the origin O
in the Voronoi tessellation formed from P ∪ {O}, where P
is a unit intensity Poisson process in R2. This is a genuinely
different problem from the present one – it is entirely possible
that the expected amount of uncovered area in Bn tends to
zero, but that the probability that not all of Bn is covered
tends to one. Indeed this does occur for certain values of the
parameters.

As motivation for our main results, let us briefly state,
and sketch the proof of, the result for the one-dimensional
version of our problem. Here, we wish to cover an interval
In of length n with small intervals centered at black points (a
Poisson process with intensity 1), which in turn are stopped by
red points (a Poisson process with intensity λ). Denoting the
probability of such coverage by p1λ(n), the result is as follows.

Theorem 1. If λ2n = x, then p1λ(n) → e−4x.

Proof. Let L be an interval of length ℓ between two consec-
utive red points in In. We wish to compute the probability
that L is covered. With this in mind, let m be the midpoint
of L, let x be the distance of the closest black point to m
lying on the left of m, and let y be the distance of the closest
black point to m lying on the right of m. Then coverage of
L is determined solely by x and y. Indeed, coverage occurs
if and only if x+ y < ℓ/2. Consequently, the probability that
L is covered is just P(Po(ℓ/2) ≥ 2) = 1 − e−ℓ/2(1 + ℓ/2).
Next, the unconditional probability that the interval between
two consecutive red points is covered, obtained by integrating
the above probability against the density function of ℓ, is
(1 + 2λ)−2 ∼ 1 − 4λ. Finally, since there are asymptotically
nλ → ∞ intervals between consecutive red points, and cover-
age fails independently in each one with probability asymptoti-
cally 4λ → 0, the number of failures is approximately Poisson
with mean 4nλ2 = 4x, and the result follows.

The above argument reveals that the obstructions to cov-
erage will typically comprise two red points, distance O(1)
apart, without black points sufficiently close to their midpoint
to ensure coverage of the interval between them. The set of
such intervals is roughly four times as large as its subset
consisting of consecutive red points with no black point
between them. In other words, choosing λ to prohibit such

pairs of consecutive red points provides a necessary condition
for coverage, λ2n → 0, which is in fact also sufficient,
although such an argument gives the wrong constant in the
exponent in Theorem 1. One might expect that a similar
situation will exist in two dimensions, namely that if λ3n = x,
then pλ(n) tends to e−cx, or possibly some other function of
x. The likely obstructions might be triples {p, q, r} of red
points forming a triangle T , whose sides and area are O(1),
and which contains no black points in its interior. However,
as we shall show, the truth is more complicated.

II. MAIN RESULTS

Theorem 2. If λ3n log n → ∞, then pλ(n) → 0.

Proof. Our strategy will be to show that, under the hypothesis,
the expected number of good configurations (defined below)
tends to infinity. A routine application of the second moment
method then shows that a good configuration occurs with high
probability (probability tending to one). Finally, we show that
a good configuration results in an uncovered region of Bn.

First, therefore, we define a good configuration. Such a
configuration, illustrated (though not to scale) in Figure 1,
consists of an ordered triple (p, q, r) of red points in Bn. p
and q must lie at distance t, where n−1/12 < t < 1. r must
lie at distance between 50/t and 100/t of p, in such a way
that the angle rpq is between π/4 and 3π/4. (The choice of
these angles is somewhat arbitrary: all we need is that the
angle rpq is bounded away from 0 and π.) Write ℓij for the
perpendicular bisector of ij, and S for the bi-infinite strip of
width ||p−q|| centered on ℓpq . For ease of explanation, suppose
that the segment pq is horizontal, so that S is vertical, and that
r lies above the line through p and q. ℓpr and ℓqr intersect the
boundary ∂S of S in four points; suppose that the highest
of these lies at height h ≤ 110/t above pq. Write R ⊂ S
for the rectangle with base pq and height 2h (containing all
four intersections above), and R′ ⊂ S for its reflection in pq.
A good configuration must also have no black points in the
rectangular region R ∪R′. Note that the area of R ∪R′ is at
most 440, so that, conditioned on the locations of p, q and r,
the condition on the black points is satisfied with probability at
least e−440. Now, in a good configuration, given the position
of p, q is constrained to lie in some annulus centered at p of
area 2πt dt, with n−1/12 < t < 1, and then r must lie in a
region of area 7500π/4t2. Consequently, writing X for the
number of good configurations, there exist absolute constants
C and C ′ such that

E(X) ≥ C

∫ 1

n−1/12

λn · λt−2 · λt dt = C ′λ3n log n → ∞.

Second, we show that we can apply the second moment
method to prove that, with high probability, X ≥ 1. For this
to work, we require an upper bound on λ; it will suffice
to assume λ3n → 0. Since pλ(n) is decreasing in λ, if
we can prove that pλ(n) → 0 under the more restrictive
hypotheses, the full result will follow. Tessellate Bn with
squares of side length n1/6, and color a square black if both of
its “coordinates” are even. (Thus one out of every four squares
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Fig. 1. A good configuration. r′ and Dr are not shown, but Dr just fails to
cover the curvilinear triangle with base pq. The dashed triangle is the Voronoi
cell for the point s′ slightly above the midpoint of pq.

is black.) We will only consider the black squares, which we
label S1, S2, . . . , SN . Let the apex of a good configuration
be the point furthest from the opposite side (r, in the above
notation), and write Xi for the number of good configurations
with apex in Si. With high probability, each Xi will be either
zero or one. Moreover, since the maximum diameter of a
good configuration is O(n1/12) by construction, the Xi are
independent. Let X ′ =

∑
Xi. Then E(X ′) → ∞ as above,

and since

P(Xi ≥ 1) = O(log n/n2/3) → 0,

it follows that

Var(X ′) =
∑

Var(Xi) ∼
∑

E(Xi) = E(X ′),

and so by Chebyshev’s inequality

P(X = 0) ≤ P(X ′ = 0) ≤ Var(X ′)

E(X ′)2
∼ 1

E(X ′)
→ 0.

Finally, we explain why the presence of a good configu-
ration prohibits full coverage. As above, suppose that pq is

horizontal, and that r, and hence ℓpr and ℓqr, lie above pq. The
idea is that part of ℓpq lying just above pq will be uncovered.
Write m0 for the midpoint of pq, and ms for the point of
ℓpq at height s above pq. Any black points lying in S and
above pq are much closer to r than to p or q, and so their
corresponding discs cannot cover m0 or ms, for s ∼ C/t.
Write q′ for the intersection of ℓpr with ∂S lying above p, p′

for the intersection of ℓqr with ∂S lying above q, and r′ for
the midpoint of the opposite side of R′ from pq. The points
p′, q′ and r′ are the best locations to place black points for the
purposes of covering points ms, for small s. However, even
their corresponding black discs fail to cover ms′ , for suitable
s′. Specifically, write

Dp = D(p′, ||p′ − q||) = D(p′, ||p′ − r||),
Dq = D(q′, ||q′ − p||) = D(q′, ||q′ − r||),
Dr = D(r′, ||r′ − p||) = D(r′, ||r′ − q||).

If the distance of i′ from pq is ci/t, then the heights of Dp and
Dq above m0 are asymptotically t3/8ci, and Dr only covers
ms for s < t3/8cr (asymptotically). However, by construction,

cr ≥ 3
2 max{cp, cq},

so the point ms′ , for s′ = t3/7cr, will be uncovered by
Dp ∪ Dq ∪ Dr. Having identified s′, it is straightforward to
check that the Voronoi cell V of {s′, p, q, r} (shown dashed
in Figure 1) is entirely contained in R∪R′. Therefore, s′ will
not be covered by Aλ, since, by construction, V ⊂ R ∪R′ is
free of black points; all black discs will be stopped by p, q, r,
or another red point, before they cover s′.

For i = 0, 1, 2, . . ., let us say that a good configuration is of
type i if the parameter t = ||p−q|| satisfies 2−(i+1) ≤ t < 2−i.
Close to the threshold, for each i, there will be O(λ3n) = o(1)
good configurations of type i, so that, for fixed i, the proba-
bility that a good configuration of type i exists in Bn tends to
zero. However, there are C log n possible types, and so, under
the hypotheses of Theorem 2, some good configuration will
occur in Bn with high probability. The next theorem shows
that good configurations are essentially the only obstructions
to coverage.

Theorem 3. If λ3n log n → 0, then pλ(n) → 1.

Proof. Suppose that n → ∞ and also that λ3n log n → 0.
First, we show that we need only worry about coverage of
parts of Bn which are close (within distance

√
8 log n) to a

red point. To do this, we tessellate Bn with squares of side
length r =

√
log n. The probability that any small square of

the tessellation contains no black point is e− logn = n−1.
Since there are ∼ n/ logn such squares, the expected num-
ber of them containing no black points is asymptotically
1/ log n → 0. Consequently, with high probability, every
small square contains a black point. Now fix a small square S.
If no point of S is within distance

√
2 log n of a red point, and

if S contains a black point, then all of S will be covered by Aλ.
Therefore, with high probability, any point of Bn at distance



more than
√
8 log n from all red points will be covered by Aλ,

and we may assume this from now on.
It remains to show that the regions of Bn within distance√
8 log n from a red point are covered by Aλ. Color such

regions yellow. In order to facilitate a division into cases,
let us construct a graph G = G(n,P ′) on the red points by
joining two red points if they lie within distance R = R(n) =√
128 log n of each other. (Such a graph is usually called a

random geometric graph.) A routine calculation shows that,
with high probability, the connected components of G con-
sist of o(n2/3(log n)−1/3) isolated vertices, o(n1/3(log n)1/3)
edges, o(log n) triangles, and o(log n) paths of length 2 (i.e.,
paths with 2 edges). We deal with each of these in turn; it
will be convenient to consider a path of length 2 as a triangle,
even though one of its edges is “long”.

Isolated vertices. Consider the circles of radii
√
8 log n

and
√
32 log n around each isolated red point, and divide the

annulus between these circles into 6 equal “sectors”, each of
area 4π log n. With high probability, there is a black point
inside each sector, and this black point is closer to the isolated
vertex than to any other red point. But then the yellow region
surrounding the isolated vertex is covered by Aλ.

Edges. For a fixed edge e = pq ∈ E(G), where we may
assume p = (0, 0) and q = (t, 0), consider the circles of radii√
8 log n and

√
32 log n around p and q. Divide each half-

annulus, between two concentric circles and lying outside the
“critical strip” S = [0, t] × R, into 3 equal sectors, each of
area 4π log n. With high probability, there is a black point
inside each sector, and this black point is closer to p or q
than to any other red point. Thus the yellow regions outside S
are covered by Aλ. However, coverage of the yellow regions
inside the critical strip S is not guaranteed. Indeed, the proof
of Theorem 2 shows that such coverage is threatened by the
presence of red points at distance ∼ C/t from e. G contains
edges almost as short as n−1/6, so such points may lie almost
as far as n1/6 from e, almost as much as the typical distance
between red points.

We need to show that the edge e = pq is, with high
probability, covered from both above and below, so that the
yellow regions inside S both above and below e are covered
by Aλ. It will be sufficient to show that e is covered from
above with high probability; an analogous argument will then
deal with coverage from below. Let r be the closest point to
p, under the condition that the angle rpq is between 0 and π
(thus, in this case, r is “above” e), and write s = ||r − p||.
With notation as in the proof of Theorem 2, the lines ℓpr and
ℓqr intersect at height h ≥ s

2
√
3

above e (see Figure 2). Now
let ℓ be the line parallel to e, lying at height

√
2 log n above

e, and let T be the rectangle with base of length t
2 lying on

ℓ, of height

h

2
−
√
2 log n ≥ s

4
√
3
−
√
2 log n ≥ s

60
,

and such that T is bisected by ℓpq. Every point of T lies below
both ℓpr and ℓqr, and so is closer to p and q than r. Denoting
the left and right halves of T by L and R respectively, we see

p q

r

L R

r

p q

L R

Fig. 2. Covering the edge pq from above

that if each of L and R contains a black point, then the entire
yellow region inside S and above e will be covered by the discs
centered at these two points. But, with probability at least 1−
2e−st/240, L and R each do contain a black point. Therefore,
there exist constants C and C ′ such that the expected number
Y of edges not covered from above can be bounded by

E(Y ) ≤ o(1) + Cλn

∫ √
128 logn

n−1/6

λt

∫ ∞

√
128 logn

λse−st/240 ds dt

≤ o(1) + Cλn

∫ √
128 logn

n−1/6

λt

∫ ∞

0

λxt−2e−x/240 dx dt

= o(1) + Cλ3n

∫ √
128 logn

n−1/6

t−1

∫ ∞

0

xe−x/240 dx dt

= o(1) + C′λ3n logn → 0.

Consequently, with high probability, the yellow regions close
to all the edges in G are completely covered by Aλ.

Triangles. We expect o(log n) triangles T in G, and we
will classify them by the length x of their smallest sides. In
the first case, illustrated in the first two parts of Figure 3, no
angle of T is greater than 9

10π. Consider the disc D, centered
at the circumcenter of T , of radius x

4 . If each of the three
sectors of D formed from the perpendicular bisectors of the
sides of T contains a black point, then the entire interior of
T is covered by Aλ; the exterior of T is easily seen to be
covered with high probability. But each of these sectors has
area at least π

20 ·
x2

16 = πx2

320 , so that the expected number T1 of
such triangles which are not entirely covered can be bounded



by

E(T1) ≤ o(1) + Cλ2n log n

∫ √
128 logn

n−1/6

λxe−πx2/320 dx

≤ o(1) + Cλ3n log n

∫ ∞

0

xe−πx2/320 dx

= o(1) + C ′λ3n log n → 0,

for some constants C and C ′. In the second case, where one
angle of T , say the angle at p, is greater than 9

10π, we consider
the two rectangles whose centers lie on ℓpq and ℓpr, halfway
from pq (respectively pr) to the circumcenter of T , whose
bases are parallel to the respective sides pq and pr, and whose
heights and widths are x

10 and x
3 respectively (see the third part

of Figure 3). If each half of each of these rectangles contains a
black point, the interior of T is covered, and so the expected
number T2 of such triangles which are not entirely covered
can be bounded by

E(T2) ≤ o(1) + Cλ2n log n

∫ √
128 logn

n−1/6

λxe−πx2/60 dx

≤ o(1) + Cλ3n log n

∫ ∞

0

xe−πx2/60 dx

= o(1) + C ′λ3n log n → 0,

for some constants C and C ′. Therefore, with high probability,
the interiors of all the triangles in G are covered by Aλ,
completing the proof of the theorem.

III. HEURISTICS

I suspect that much more is true, and provable. Specifically,
I now present a heuristic argument, which I hope to convert
into a proof, suggesting that if λ3n log n = y, then

e−8π2y ≤ pλ(n) ≤ e−
8
3π

2y.

Suppose that λ3n log n = y. We follow the strategy of the
proof of Theorem 3, with a few modifications. Define the
graph G = G(n,P ′) on the red points as in that proof. With
high probability, the yellow regions associated with isolated
vertices are still covered by black discs, even at this higher
range of values of λ. I expect that more detailed estimates will
show that the yellow regions inside and close to triangles in
G are also still covered, again at this higher range of values of
λ, and with high probability. Consequently, all the uncovered
regions in Bn are associated with edges in G.

The detailed strategy for the remainder of the proof is as
follows. First, we need to estimate the frequency of uncovered
edges (i.e., edges in G whose associated yellow regions are
uncovered by black discs). Suppose that this frequency is such
that we expect cy uncovered edges in Bn. Then these uncov-
ered edges can be well-approximated by a Poisson process in
Bn (this can be verified using the Chen-Stein method [1]), and
so the probability that there will be no uncovered edges will
tend to e−cy . But, following the above remarks, this is also
the probability of coverage.

p

q r

(a) Covering triangles: all angles acute

p

q r

(b) Covering triangles: no large angle

p

q
r

(c) Covering triangles: one large angle

Fig. 3. Covering the interior of triangle pqr

Unfortunately, estimating c itself seems quite hard, since,
in contrast to the one-dimensional case, there is no simple
necessary and sufficient condition for an edge of G to be
covered by Aλ. The best we can do is describe a simple
necessary condition for coverage (edges not satisfying this
condition are termed Type 2 edges), and a corresponding
simple sufficient condition for coverage (edges not satisfying
such a condition are Type 1 edges). Type 2 edges provide a
lower bound on c, and hence an upper bound on pλ(n), while
Type 1 edges provide an upper bound on c, and a lower bound
on pλ(n). To summarize, denoting the sets of Type 1, Type
2, and uncovered edges in Bn by T1, T2, and U , we have
T2 ⊂ U ⊂ T1. We now turn to the precise descriptions of
these types of edge.

Type 1 edges. With reference to Figures 1 and 2, let R be
the rectangle whose base is parallel to pq and lies at height√
2 log n above pq, whose top is parallel to pq and just touches

the lowest of the four intersections of ℓpr and ℓqr with S, and
whose sides are those of S itself. A sufficient condition for
coverage of pq is that pq is covered from above, that is, there
are sufficiently many black points in R to cover the yellow
region above pq; the yellow region below pq is covered, for all
such edges in Bn, with high probability. (This condition is not
necessary, since black points below pq might by themselves



cover the yellow regions on both sides.) We can estimate the
number of Type 1 configurations by “projecting” the black
points in R to the edge pq, resulting in a one-dimensional
process on an interval of length 1 whose intensity is just the
area of R, and applying (the proof of) Theorem 1. We will
call a rectangle R whose black points do not cover pq from
above a blue rectangle; Type 1 edges are those associated with
blue rectangles.

Type 2 edges. Again with reference to Figures 1 and 2,
let V be the dotted Voronoi cell corresponding to a point
s′, where s′ has been chosen to maximize the area of V . A
necessary condition for coverage of the yellow region above
pq is coverage of the point s′, and this occurs if and only if a
black point lies in V . (This condition is clearly not sufficient.)
A rough calculation shows that s′, as defined in the proof of
Theorem 2, is already almost optimal; the point on ℓpq which
maximizes the area of V is at height asymptotically t2/8u
above pq, where ||p − q|| = t, and where the circumcenter
of pqr is at height u above pq. For this choice of s′, V
has area approximately tu/2, and so is free of black points
with probability about e−tu/2. Call a Voronoi cell V without
black points a green triangle; Type 2 configurations are those
associated with green triangles.

When estimating the frequencies of Type 1 and Type
2 edges, we may assume that t ≪ 1, and indeed that
t ≪ (log n)−1/2, since even edges not satisfying the stronger
restriction comprise an asymptotically negligible fraction of
both types of edge. Also, the edges of both types are well-
approximated by Poisson processes, so that if we expect c1y
edges of Type 1, and c2y edges of Type 2, we will have
e−c1y ≤ pλ(n) ≤ e−c2y .

Suppose that the circumcenter of triangle pqr lies at height
between u and u + du above pq. This means that r must
lie in an asymmetrical annulus of area 2πu du. Under these
circumstances, the rectangle R has area ut, and will be
blue with probability (1 + ut/2)e−ut/2, while the Voronoi
cell V has area ut/2, and will be green with probability
e−ut/2. Consequently, making the substitution x = ut in both
integrals,

E(|T1|) ∼ λn

∫ √
128 logn

n−1/6

2πλt

∫ ∞

√
128 logn

2πλu

eut/2

(
1 +

ut

2

)
du dt

= 4π2λ3n

∫ √
128 logn

n−1/6

1

t
dt

∫ ∞

t
√
128 logn

x
(
1 +

x

2

)
e−x/2 dx

∼ 4π2λ3n

∫ √
128 logn

n−1/6

1

t
dt

∫ ∞

0

x
(
1 +

x

2

)
e−x/2 dx

∼ 8π2λ3n logn = 8π2y,

and

E(|T2|) ∼ λn

∫ √
128 logn

n−1/6

2πλt

∫ ∞

√
128 logn

2πλue−ut/2 du dt

∼ 4π2λ3n

∫ √
128 logn

n−1/6

1

t
dt

∫ ∞

0

xe−x/2 dx

∼ 8

3
π2λ3n log n =

8

3
π2y,

completing the argument.

The variable x in the above calculation can be inter-
preted as the amount by which a “generic” configuration
has been “stretched”; the frequency of blue rectangles and
green triangles corresponding to a fixed value of t and with
x ≤ ut ≤ x+ dx is exponentially decreasing in x.

As explained above, it does seem likely that there ex-
ists a single constant c such that if λ3n log n = y then
pλ(n) → e−cy . It might even be possible to provide an explicit
expression for c. Finally, it would be interesting to investigate
the problem in higher dimensions.

IV. CONCLUSION

The main contribution of this paper has been to extend the
work in [14] and provide detailed information on the prob-
ability of complete coverage in a sensor network populated
by base stations and eavesdroppers. Close to the coverage
threshold, the expected amount of uncovered area is very
small, and perhaps negligible in practice. Nonetheless, the
“unexpected” factor of log n in our results may be as high
as 15 for some applications, which leads to a reduction in the
threshold value of λ of about 2.5 (compared to the “naive”
guess). It is surprising to me that such a simple mathematical
problem seems to have such a complicated answer. I hope
that the techniques developed in this paper will shed light on
similar problems in the future.
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