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Abstract—Secrecy graphs model the connectivity of wireless The motivation for this construction is that € P can
networks under secrecy constraints. Directed edges in the@h send a message tp € P without being overheard by an

are present whenever a node can talk to another node securely eavesdropper fromP’. For more details, see [5], where the
in the presence of eavesdroppers. In the case of infinite nebnks, - e ! ’
model was originally defined.

a critical parameter is the maximum density of eavesdroppes A . ' .
that can be accommodated while still guaranteeing an infini Our main aim in this paper is to study the critical value(s) of
component in the network, i.e., thepercolation threshold. We focus A for various types of percolation ids.. in the plane (precise
on the case where the location of the nodes and the eavesdremp  definitions will be given later), first without power constria

are given by Poisson point processes, with and without power (gection |11) and second with power constraint (Section. IV)
constraints. We present bounds for different types of perclation,

including in-, out- and undirected percolation. [Il. PERCOLATION WITHOUT POWER CONSTRAINT
I. INTRODUCTION For a model of an infinite undirected random grapkr-

To assess the impact of secrecy constraints in wireldeationis said to occur if an infinite component occurs with
networks, we have recently introduced a random geometR@Sitive probability. (In fact, this probability is almoatways

graph, the so-callesecrecy graphthat represents the network: Py Kolmogorov's 0-1 law—see Theorem 1.) SinGé.. is
or communication graph including only links over whicH directed graph, there are several things we could mean by
secure communication is possible [5]. “component”, which lead to several definitions of percaati

We assume that a transmitter can choose the rate such thEP#owing [1], we distinguish five distinct events. Firstrite

can communicate to any receiver that is closer than any of tffecc fOr the undirected graph obtained frai.. by removing

eavesdroppers. If in addition a power constraint is imppsef€ orientations of the edges and replacing any resultingleo
the maximum edge length is upper bounded by some valG@des Py single edges, ar@,, for the undirected graph
p < oco. This way, the secrecy constraint translates into @Ptained fromGy. by including only those edgesy for
simple geometric constraint for secrecy. A natural topic fdVNich bothay € Guec andyi € Giec. We write U for the
investigation is the threshold at which infinite componenf/€Nt thatGs.c has an infinite componen@ for the event

cease to exist. Since the resulting graph is directed, thdfl@t Gsec has an infinite out-componerit,for the the event

are different types of components, including in-, out-, antiat Gsec has an infinite in-componen§ for the event that

undirected components. In each case, the percolatiorhiices Gsec has an infilnite strongly connected subgraph, &ntbr
(in terms of the density of eavesdroppers) is different. the event thatG/.. has an infinite component. Here, an out

sec

(resp. in)-component is a subgraph with a spanning subtree
Il. MODEL whose edges are all directed away from (resp. towards) a root

Our model is as follows. Lef? and P’ be independent Vertex, and a strongly connected subgraph is one where there
Poisson processes, of intensities 1 ancespectively, inR¢. ~ are directed paths fromto y for all 2 andy in the subgraph.
The cased = 2 provides a good example. We will call theAs noted in [1], we have the following implications:
points of P black pointsand the points ofP’ red points
Now define a directed graph, tliérected secrecy grapt?sec, B=S= (Iand 0), (Lor0)=U. @
on vertex setP, by sending a directed edge fromc P to Let X denote any ofU,O,I,S or B, and letpx (A, d) =
y € P if there is no point of’ in the open balD(z, [|[z—y||) P(X).
centered at with radius||x—yl||. If there is a power constraint
all edges longer than some maximum valge< oo are
removed.

'Theorem 1. For all values of\ andd, and all choices oiX,
px (A, d) is either 0 or 1.

_ Proof: The Poisson process is ergodic, and so the prob-
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A complete proof from first principles is given in [14],Proposition 2. The probabilityfo(A\) that O belongs to an
where the uniqueness of the infinite cluster also has beefinite out-component in the secrecy graph satisfies
established.

Since, for a fixed instance @?, adding points toP’ can 0o(A) < max{0,1 — A}.
only remove edges frontzs.., the probabilitypx (), d) is Proof: See [14]. -

Poc;rr;:lr:;reasmg Im. Define thecritical intensity Ax.q by the In higher dimensions, the cluster is approximated bettdr an
better by the appropriate branching process, at least for th
Ax,q =1inf{\ : px(\,d) = 0} =sup{\: px(\,d) =1} Gilbert andk-nearest neighbour models. This is because the
distances from a point € P to its two nearest neighbours in
‘P converge in distribution to a (common) deterministic limit
and because the overlap between the balls centered at & paren
and at its child gets smaller and smaller, s~ oc. There
AB < As < min{\;,\o}, max{\, Ao} < Au. (2) Iis a slight complication in that the error (between the model
) L _ _ ) and a branching process) is only asymptotically negligivier
Our first aim is to provide bounds ohx. While doing finitely many generations. Therefore, in both [6] and [10]; 0
this, we survey various methods that have been used for 0tigfe| |attice percolation is brought in to establish asyipt
continuum percolation models. They are from [4], and [10}, esholds for percolation. The results are that in sufiitje
on percolatl_on in the Gilbert disc _model, and from [1] and [6]1igh dimension,k — 2 gives percolation for theé:-nearest
on percolation in the:-nearest neighbour model. neighbour model, and that the critical volume in the Gilbert
A. Branching processes ([4], [6], [10]) model tends to 1 ag — oo.

For both the Gilbert disc model and thenearest neighbour For the secrecy graph, we have
model (the “traditional models”), the basic method is as fofrheorem 3. If A > 1, then, for alld, 0o 4()\) = 0. If A < 1,
lows. We start with a vertex of P, grow the cluster containing then 0o.a(A) = 1—Xasd — oo.
2 in “generations”, and compare the growing cluster to a )
branching process. For the most natural way of doing th‘[@e first part of the theorem follows from the above proposi-
(details below), the branching process has more points tH4{!- The proof of the second part, where we assume 1,
the cluster, so, in all dimensions, if the branching prockss is lengthy and can also_ be found in [14]. i
out, so will the cluster. We can now use classical resultgvhi  Although the branching method seems to be tailored for
tell us when certain branching processes die out. Conséguerfi€nted out-percolation, it also gives bounds via (2).
in all dimensions, branching processes give lower bounds . .
thresholds in the traditional models, i.e., they show thoat ffg' Lattice percolation ([4], [6]. [12], [13])
certain parameters, percolatidoes notoccur. Two variants of the basic method, applied to the Gilbert
In the following, we will describe the method for the Gilbermodel, are described in Gilbert’s original paper [4]. Fotho
disc model, although it is almost the same as forkheearest variants, fix a connection radius First, if we consider the
neighbour model. Assume that the origihis a point of P. square lattice with bonds of lengtly2, and make the state
First pick the points ofP within distancer of O — these are of a bonde open iff there is at least one point ¢ in
the first generation. The second generation are the pointstlod square whosdiagonalis e, then bond percolation in the
P which are each within distance of some first generation lattice implies percolation in the Gilbert model. Secoridyé
point, but are not in the first generation themselves (iteyt consider the hexagonal lattice where the hexagons have side
are not within distance of O). The third generation are thelength r/4/13, and make the state of a hexagon open iff it
points of P not belonging to the first two generations, butontains a point of?, then face percolation in the hexagonal
which are each within distance of some second generationlattice implies percolation in the Gilbert model. Using faet
point, and so on. The associated branching process is ebtaithat the critical probabilities for both bond percolationthe
by setting each offspring size distribution to Pe(nr?), so square lattice and face percolation in the hexagonal éattie
that we are essentially growing the same cluster contaifiing equal to1/2, one thus obtains upper bounds on the critical
but ignoring the fact that the various discs we have scanmed &rearr? of about17.4 and10.9, respectively.
points actually overlap. In [4], Gilbert argues thatrif?> < 1, Haggstrom and Meester [6] used this method to show that,
the branching process dies out with probability 1, so that tifior fixed d, percolation occurs in thé-nearest neighbour
critical area for percolation is at least 1. When? > 1, it model for sufficiently largek. Pinto and Win [12] (see [13]
is possible to calculate (numerically) the probabilityttitae for more details) applied it to show that percolation ocdars
branching process dies out, so this gives an upper boundalhversions of the secrecy graph model wheis sufficiently
the probability thatO belongs to an infinite component. small. For the latter application, one needs to dependent
This method can be used to give an upper bound pércolation which means that the bounds are rather weak.
Ao < 1 for the secrecy graph model. In fact, for oriented’heir method can be used to derive a bound which is two
out-percolation, we have the following result; orders of magnitude away from the likely truth.

and write (just for this papern)x = Ax 2. We reiterate that
increasing\ decreaseghe probability of percolation, in our
formulation of the model. From (1), we have



S T state of the Poisson processes outside 7', and moreover
that K contains at least one black point.

Now consider the following percolation model @3. Each
vertex (i, j) € Z* corresponds to a squaf&i, R(i + 1)] x
[Rj,R(j + 1)] in R?, where R = 2r + 2s, and an edge is
open between adjacent vertices (corresponding to squares
and 7T') if both the corresponding basic good evetig s
L and Eg 1, hold. Note that this is a 1-independent model on
Z2, and that percolation in this model implies percolation in
the original one. Since, by Theorem 5, the critical proligbil
for any 1-independent model is at most 0.8639, if we can show
Fig. 1. The rolling ball method that, for somer, s, A,

P(Eg s1) > 0.93195

So while lattice percolation has generally been used to sh@Wyil follow that
that percolatiordoes occuin these models, it can also be used
to show that percolatiodoes not occuin the secrecy graph P(EB,s,r N EB,1,5) > 0.8639

if A is sufficiently large. by symmetry, and hence we will have shown that > .

C. The rolling ball method ([1]) To bound the probability that a basic good event fails, we

proceed as follows. LeK, L. and M be as in Figure 1.1 is

This is a method designed to show that percolatioes o region between the two disés and 1.) Define Bl ¢

occur for certain parameter ranges in various models. It Wg§ pe the event that for every black point K U L, there is
applied in [1] to prove upper bounds for critical valueskof , pjack pointu such that ijuv € E(G.) i) |lu—v| < s and

in the k t neighb del ; ; TR
In the k-nearest neighbour moael. i) u € D,, whereD, is the disc of radius inside K ULUM

The method involves comparison with 1-independent pefjit, , on its i -side boundary (the middle disc in Figure 1).

colation and carries through almost entirely for the secreg e |et 7 be the event that there is at least one black point
graph. We will only need to modify some of the equationg, x then we have (see [1] for background)
from [1]: however, for completeness, we include a full agtou

of the method here. First, we state precisely what we mean EgsrNFsCEgsr

by a 1-independent percolation model and so

Definition 4. A bond percolation model ofi? is said to be ESsr C(Epsr)° UFS
1-independent if, whenevdr; and E,> are sets of edges at

. . X S
graph distance at least 1 from each other (i.e., if no edge Rﬁ
E; is incident to any edge of-), the state of the edges in
E is independent of the state of the edgediin P(ES sr) < e £ 2r(2r + 25)pB.r.s

that, sinceP((E{B,S7T)C) is bounded by the expected
mber of pointy such that i), ii) or iii) fail,

We will use the following theorem, proved in [2]. wherepg , 5 is the probability that i), i) or iii) fail for some

Theorem 5. If every edge in a 1-independent bond percolatioﬂxed v

model onZ? is open with probability at least 0.8639, then, To boundpg, s, we consider the probability that the vertex

almost surely, there is an infinite open component. Moreovgrdos_ESt tov inside D, fails one of i), "_) or i) (or_ does
ot exist). Suppose some € D, does exist, and writ¢ =

if B is a bounded region of the plane, there is, almost surely,
a cycle of open edggs surroundFi)ng u—v|,A = B(vt),B = B(v,t)N Dy and C = B(u,1).
Let pg(u) be the probability that: is the closest point t@

We will use the first part of the theorem for our loweinside D,, but thatuv ¢ G... Then

bounds, and the second part for our upper bounds. B _AAUC|y .~ |B| 3
For simplicity, let us first consider the caseB{percolation. pB(u) = (1 —e e ®)

Later, we will indicate the modifications necessary for thgnd also

other types.
Consider the rectangular region consisting of two adjacent  PB,rs < e 1PunB(v.s)l +/ pB(u)du

squaresS,T shown in Figure 1. BothS and T have side ueDuNB(v,s)

length 2 + 2s, wherer and s are to be chosen later. Also,so0 that

T may be to the right, left, above or belasy in which case .

Figure 1 should be rotated accordingly. We define hsic ~ P(Eg gr) <e ™ +2r(2r + 25)<€D”QB(U’S)|+

good eventtg s 1 to be the event that every black poinin

the central disd< of S is joined to at least one black point in / (1 — e ANAVC]) I Bl du) (4)

the central discM of T' by a path inG’__, regardless of the u€D,NB(v,s)

sec’?



A T s p
0.002 | 1.659 | 3.15 | 0.0669
0.0008 | 1.658 | 3.15 | 0.0677
0.0005 | 1.657 | 3.15 | 0.0680

e

Wogw™

TABLE |
UPPER BOUNDS ONp = min, s P(E s.7) (VALUES OF p ROUNDED UR)

and the right hand side can be minimized overraknd s,
with X fixed. The result is shown in Table 1, in ra&.

The calculation for the cas&$ andO is exactly analogous,
using the graph€ss.. and ésec respectively. The analogues
of (3) are Fig. 2. Forbidden path for upper bound method

pul) = (1 — e NAl Z ¢=ACl L o=NAUCh ~ 1Bl (5)

This is the integral we estimate using Monte Carlo methods.
po(u) = (1 — efA\A\)ef\B| (6) Using a computer program we generated many instances, and

counted the proportion of times these conditions held. From
respectively, and the natural analogue of (4) applies. Thieese we calculated the confidence level, i.e., the prababil
results of the optimization are shown in Table 1. p that these results (or better) could be obtained, if the true

As proved in [1], the bound foho in fact applies toAs value of the integral was less than 0.8639. In all casesms

and \; as well. In conclusion, we have proved the followindess tharl0—2°: the detailed results appear in Table 2. It turns
theorem. out that the method for th& = O case actually applies to
Theorem 6. Ay > 0.002, Ao > 0.0008, A1 > 0.0008, Ag > the caseX = S andX =T as well, and the results obtained

0.0008 and Ag > 0.0005. are as follows.
. . Theorem 7. With high confidenceAg > 0.09,\0 >
D. High confidence results ([1]) 0.11, A > 0.11, Ag > 0911 and Ay > 0.20. ©

This method gives both upper and lower bounds for perco- .
lation thresholds in thé-nearest neighbour model. It involves 1he upper bound method (corresponding to the lower bound
computing a certain high dimensional integral using Monf@efthod for thek-nearest nelghbour model) is as .follows. For
Carlo methods, and so is not fully rigorous. The approadyitabler ands, we generate instances Bfand?’ in SUT,
carries over essentially completely for the secrecy graph. @nd check whether, regardiess of the state of the processes

The lower bound method (corresponding to the upper boufHtSide S U T, there is no path (insec, Gsee OF G for
method for thek-nearest neighbour model) may be summdhe casesX = U, O,B) from outsideS U T" that crosses
rized as follows. Given a trial value of, which we wish to the liné segment joining the center 6fto the center ofl’
show is a lower bound on one of the percolation thresholé&€€ Figure 2). We define a 1-independent percolation model
Au, Ao OF Ag, we choose trial values of and s. Then we ON 72 by declaring an edge open if this condition holds for
generate a random instance BfU P’ inside S U T and test the corresponding rectangleU 7' If an edge is open with
for the following conditions: i) for more than half of the ska Probability at least 0.8639, then, from Theorem 5, there are
pointsv € K, there are paths (iﬁ;semésec or G, for the ©OPeN cycles sgrroundmg any poqued region of the _plane.
casesX = U,O,B) to more than half the black points in_ConsequentIy, if there was an _mfmﬂ?é—component starting
M, regardless of the state 61 U P’ outsideS U T ii) for N some such bounded region, it would have to cross an open
more than half of the black points € M, there are paths cycle, and in particular cross the central line segment i@ on
to more than half the black points i, regardless of the Of the rectangles’'UT" corresponding to an open edge in this
state of P U P’ outside S U T. As before, it is clear that cycle. This contradicts the condition for that edge to bengpe
this is a 1-independent model on the bonds joining adjacé’HId so percolatlon cannot occur if the edges are open with
squares, and that percolation in this model implies peticola Probability at least 0.8639. _
in the original one. Consequently, if these conditions hold The results of these S|mylat|ons are also shown in Table 2,
with probability at least 0.8639, then percolation occaiise @nd so we have the following result.

condition that the path should be independent of the procégseorem 8. With high confidence)s < 0.13,)\o0 <
outside S U T' is simply obtained by ignoring any edges 06_177 Ar < 0.17,\s > 0.17 and Ay < 0.27. - -

—

uwv € E(Gsec(SUT)) where||u — v|| > dist(u, (S UT)),
since only edgesw with |lu — v|| < dist(u,0(S U T)) are
guaranteed to exist iﬁ?scc.

The probability that conditions i) and ii) are satisfied can To model power constraints, we remove from all the original
be expressed as a complicated multiple integral, whoseevatypes of secrecy graphs all edges with length larger than the
we would like to be greater than 0.8639, for somands. maximum transmission radiys As it turns out, many of the

and

IV. PERCOLATION WITH POWER CONSTRAINTS



X | bound | value r s successes | trials | confidence U
U | lower | 0.20 | 90 | 10 1480 1500 1066 —= 0l
O | lower | 0.11 | 60 | 0 963 1000 10-2° 0.251 =0 sim.
B | lower | 0.09 | 80 | 0 2159 2250 1051 “ll-e-B
U | upper | 0.27 [ 110 | O 4296 4600 10~°T
O | upper | 0.17 | 110 | O 3689 4000 10-25 0.2t
B | upper | 0.13 | 125 | 0 6226 | 6750 | 1047 P
S
TABLE Il £ 0.15f
RESULTS OFMONTE-CARLO SIMULATIONS.(ALL CONFIDENCES %
ROUNDED UR) 8
0.1f
proposed techniques can also be used to derive bounds on
case with power limit. 0.05¢ i
. i
A. Branching processes 0 " ‘ ‘
. . . 1 15 2 25
As in the case without power constraint, we compare tt maximum edge length r

growing cluster from a black point with a branching process

to obtain a bound on\o. Due to the overlap between theFi_g. 3. _Criticgl probabilities with power control. The snitbaurve marked
neighbors of a point in the-th generation with a point of the It X is & simulated curve for the ca<.

n~+1-th generation, the cluster in the secrecy graph grows more

slowly than in the brgnching process. Consequen_tly, sihee_t V. CONCLUDING REMARKS

branching process dies out w.p. 1 if the mean off its offgprin

distribution is smaller than, the cluster in the secrecy grapl}. we havle ?res;nteorl] slzve.raltrr]ne:rqu o calculate boul:ds on
dies out also if the mean out-degree is smaller than Ve percoiation threshoids In the FoISson secrecy graph. Du
to the dependence in the model, the rigorous bounds are still

Proposition 9. Let N £ 7p2. For N > 1, rather loose; however, the high-confidence bounds deriked a
much tighter: the gap between the bounds is at most 55%.

W(—Ne™ ) : . . .
do <1+ — With power constraints, the same methods remain applicable
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