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Abstract

Let P be a Poisson point process in Rd with intensity 1. We show
that the simple random walk on the cells of the Voronoi diagram of
P is almost surely recurrent in dimensions d = 1 and d = 2 and is
almost surely transient in dimension d ≥ 3.

1 Introduction

The aim of this work is to extend classical results for random walks on the d-
dimensional lattice Zd to various random graphs. Our main results concern
the Voronoi tilings of Poisson point processes in Rd: however, we expect
that the method will work for many other random geometric graphs, such
as the k-nearest neighbour graph, and the Gilbert disc model. Our results
constitute a first step towards understanding the large scale behaviour of
random walks on these random graphs.

Given a Poisson point process P in Rd, the Voronoi cell of a point p ∈ P
is the set of all points of Rd closer to p than to any other point in P ; the
Voronoi diagram is the set of Voronoi cells of P .

The Delaunay triangulation DT(P) is the facial dual of the Voronoi dia-
gram - thus a simple random walk on the points of a Delaunay triangulation
is equivalent to a simple random walk on the cells of the Voronoi diagram. At
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each step of the walk, we move from a point p ∈ P to one of the points p′ ∈ P
whose Voronoi cell shares a d− 1-dimensional face with the Voronoi cell of p
- equivalently, the edge pp′ must belong to DT(P). We choose p′ among the
neighbours of p uniformly at random. We hereafter focus on the Delaunay
triangulation; all results immediately follow for the Voronoi diagram.

A useful equivalent definition of DT(P), stated for d = 2 but easily
generalized to higher dimensions, is the following. Given points x, y, z of
P , 4xyz is a triangle of DT(P) if and only if the unique disc with x, y and
z on its boundary contains no points aside from x, y and z. At first sight
this seems somewhat unwieldy - however, it turns out to be very useful in
practice, since it shows that a long edge in DT(P) corresponds to a large
empty region in Rd, that is, a region containing no points of P .

In this paper, we solve the problem of whether the simple random walk on
DT(P) is recurrent or transient. As with many other questions in this area, it
is not hard to guess the correct answer - recurrence for d ≤ 2 and transience
for d ≥ 3 - the difficulty lies in providing a rigorous proof. The intuition is
that the Delaunay triangulation is “essentially” a lattice, and so the results
on DT(P) should follow from those for Zd. However, the stochastic nature of
DT(P) makes direct comparison with Zd difficult. (In [4], for example, it is
proved that the critical site percolation probability for DT(P) is 1/2; much
of the difficulty of that proof lies in finding ways to rederive tools developed
for deterministic lattices in this random setting.) Furthermore, the result
does not follow easily from the deep theorems of Thomassen [10].

Instead, we imitate the proof of the result for Zd, as presented in [6].
For d ≤ 2 we utilize a bound on the stabbing number of DT(P) obtained
by Addario-Berry, Broutin and Devroye [1] in carrying out our plan. For
d ≥ 3, the picture is still more complicated: in addition to the result from
[1] we require both a result of Grimmett, Kesten and Zhang [7] on random
walks in percolation clusters and the use of a certain dependent percolation
model, whose study was initiated by Liggett, Schonmann and Stacey [9] and
continued by Balister, Bollobás and Walters [2]. (For our purposes, we only
need the simple bound from [9].)

Both the proof of the recurrence of the simple random walk in Z2 and
that of the transience of the walk in Z3 presented in [6] exploit the rela-
tionship between random walks and electrical networks. Briefly, given any
graph G, we replace each edge by a resistor of unit resistance, and maintain
a fixed potential difference between two vertices of G (or, more generally,
disjoint sets of vertices of G). The currents and potential differences in the

2



resulting electrical network have probabilistic interpretations in terms of the
simple random walk on G, and, reciprocally, the walk on G can be stud-
ied in terms of the electrical network. In particular, fix a vertex v of an
infinite graph G, short together all vertices at graph distance n from v to
form a single vertex vn, remove all vertices at distance greater than n and
write Rn(v) for the effective resistance between v and vn in the new network.
By Rayleigh’s monotonicity law, the effective resistance from v to infinity
R∞(v) = limn→∞ Rn(v) exists for all v, and it is known that the simple ran-
dom walk on G, starting at v, is transient if and only if R∞(v) < ∞. This,
together with Rayleigh’s monotonicity law that the effective resistance of a
network increases upon the removal of a resistor, will be our main tool in
what follows.

In Zd, if vertices v and w satisfy ‖v − w‖∞ = k, then there is a path
of length at most kd between v and w. We will need similar information
about DT(P) in Z3 in analyzing its effective resistance to infinity. We obtain
this by way of the stabbing number of DT(P)∩ [0, n]d. This number, denoted
stn(DT(P)), is the maximum number of Delaunay cells that intersect a single
line in DT(P) ∩ [0, n]d, where the maximum is taken over all lines in Zd. It
is easy to see that if stn(DT(P)) ≤ K, then there is a path between any
two points of DT(P) ∩ [0, n]d of length at most K. Thus, bounds on the
stabbing number will yield information on the graph distance between points
of DT(P). In the 2-dimensional case, bounds on the stabbing number also
provide bounds on the number of edges of DT(P) leaving [0, n]2, which will
prove useful in Section 2.

2 Recurrence in R2

The kth annulus Ak is the set of points of R2 with L∞-norm r, for (k − 1) ≤
r < k. Following Doyle and Snell [6], our strategy will be to short together all
points contained within each annulus. This yields a network with resistance
to infinity strictly less than in the original network. Ideally, the new network
would simply be a path of resistors with resistances r1, r2, . . ., such that rk ≥
c/k for some fixed constant c. This network trivially has infinite resistance to
infinity, establishing the theorem. In fact, due to the existence of long edges
in DT(P), reducing the original network to a path is slightly more involved
than in the lattice.

Write A′
k for the set of points with L∞-norm k, i.e., the outer boundary of
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Ak. We will need bounds on the maximum length of an edge that crosses such
a set A′

k, and on the number of such edges. Lemmas 1 and 3, respectively,
give us the required bounds on these two quantities.

Lemma 1. There exists a fixed constant c such that for all k > 1, r > 1,

P
(
A′

k is crossed by an edge of length ≥ cr
√

log k
)
≤ e−r2

.

To prove this lemma, we use the following fact:

Fact 2. If e is an edge of DT(P), then one of the half-circles with diameter
e contains no points of P.

Proof. If e is an edge of DT(P) then, by the definition of the Delaunay
triangulation given in the introduction, there is an empty circle that has e
as a chord. Such a circle necessarily contains one of the two half-circles with
diameter e.

Proof of Lemma 1. Denote by Bi the box A1 ∪ . . .∪Ai. Fix k > 1 and r > 1
arbitrarily.

Let E(k, r) be the event that A′
k is crossed by an edge of length ≥ cr

√
log k.

Let Dt be the event that there exists an edge e with one endpoint in Bk of
length between ct

√
log k and 2ct

√
log k. Trivially, such an e has its second

endpoint in Bk′ , where k′ = dk + 2ct
√

log ke. Note that E(k, r) ⊂
⋃∞

i=0 D2ir.
We will prove that

P (Dt) ≤ e−t2/2. (1)

From this it follows that

P (E(k, r)) ≤
∞∑
i=0

P (D2ir)

≤
∞∑
i=0

e−22ir2

/2

≤ e−r2

.

It thus remains to prove (1).
Let k′ be defined as above and let m < k′ be as large as possible such

that dct
√

log k/4e divides m. Let l = m/dct
√

log k/4e and partition Bm into
boxes Q1, . . . , Ql2 of side length dct

√
log k/4e. It is an easy exercise (based
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on Fact 2) to see that if Dt holds then one of Q1, . . . , Ql2 must be empty. In
what follows we use the very crude bound

l2 ≤ (k′)2 ≤ 5 max{k2, (2ct
√

log k)2} ≤ 20k2c2t2 log k =def R

which holds for sufficiently large c and which follows trivially by expanding
(k′)2. By linearity of expectation (of the number empty boxes) we thus have

P (Dt) ≤ l2P (Q1 is empty)

≤ R · exp(−(ct)2 log k/16)

= e−t2
(

20k2c2t2 log k

exp(t2(c2 log k/16− 1))

)
≤ e−t2/2,

provided exp(t2(c2 log k/16 − 1)) ≥ 40k2c2t2 log k, which certainly holds for
sufficiently large c.

The following lemma is a weakening of Theorem 1 from [1], and will also
be used in the 3-dimensional case.

Lemma 3. Fix d ≥ 1. Then there are constants κ = κ(d), K = k(d) such
that

E (stn(DT(P))) ≤ κn, (2)

and, for any α > 0,

P (stn(DT(P)) ≥ (κ + α)n) ≤ e−αn/K log n. (3)

Using these two lemmas, we can now prove:

Theorem 4. The simple random walk on DT(P) is recurrent in dimensions
one and two, with probability one.

Proof. In one dimension, the simple random walk on DT(P) is just the simple
random walk on Z, which is recurrent.

Given an edge e = uv with u ∈ Ai and v ∈ Aj for j > i, divide e into
j − i resistors in series, each of resistance 1/(j − i) and such that the kth

resistor has endpoints in the annuli Ai+k−1 and Ai+k. This network is clearly
equivalent to the original.

We now define a new network by shorting together all the points in each
annulus Ak, yielding a path of resistors R1, R2, . . . in series, having resistances
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r1, r2, . . .. The resistance of this new network is at most the resistance of the
original network. It thus remains to prove that with probability one,

∞∑
i=1

ri = ∞.

To calculate ri, we split the edges crossing A′
i into groups based on their

length. Let

Ej(i) = {e ∈ E|e = uv, u ∈ Ak1 , v ∈ Ak2 , k1 ≤ i < k2 and k2 − k1 = j}.

Figure 1: Annuli A1 through A3. Edge e is in E2(1) and E2(2) but not E2(3)
as it does not leave B3 = A1 ∪ A2 ∪ A3.

In other words, Ej(i) is the set of edges with one endpoint in Bi, one
endpoint outside of Bi, and crossing or touching j + 1 annuli in total. This
is pictured in Figure 1. In the new network, such an edge will have been
subdivided into j edges, each of resistance 1/j. By the resistance rule for
resistors in parallel, this allows us to write

1

ri

=
∞∑

j=1

∑
e∈Ej(i)

1

1/j
=

∞∑
j=1

j|Ej(i)|.

Fix ε > 0. We show that there exists a large fixed constant L such that for
all i,

P

(
∞∑

j=1

j|Ej(i)| ≥ Li log i

)
≤ 1

i2
. (4)
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Assuming (4) holds, it follows that for some i0,

P

(
∃i ≥ i0 with

∞∑
j=1

j|Ej(i)| ≥ Li log i

)
≤

∞∑
i=i0

1

i2
< ε.

Therefore, with probability greater than 1− ε,

∞∑
i=1

ri ≥
i0−1∑
i=1

ri +
∞∑

i=i0

1

Li log i
= ∞.

It thus remains to prove (4), for which we use Lemmas 1 and 3. Let E(k, r)
be defined as in Lemma 1, and set Fi = E(i,

√
2 log i + 1) - in other words,

Fi is the event that A′
i is crossed by an edge of length more than ri =

c(2 log i + 1)1/2(log i)1/2. By Lemma 1,

P (Fi) ≤ e−(
√

2 log i+1)2 ≤ 1

ei2
.

Let Gi be the event that
∑∞

i=1 |Ej(i)| ≥ 8(κ + K)i, where κ and K are as
defined in Lemma 3. Notice that

∑∞
i=1 |Ej(i)| is the total number of edges

crossing A′
i, the outer boundary of Ai.

As A′
i is composed of four line segments, if Gi occurs then necessarily one

side of A′
i crosses at least 2(κ + K)i edges. Since each edge is in precisely

two Delaunay cells, this implies stn(DT(P)) ≥ (κ + K)i. By Lemma 3, we
thus have that

P (Gi) ≤ P (stn(DT(P)) ≥ (κ + K)i) ≤ e−i/ log i ≤ 1

2i2

for all integers i ≥ 1. Thus, P (Fi ∪Gi) ≤ 1/ei2 +1/2i2 < 1/i2, and assuming
Fi ∪Gi does not occur, we have

∞∑
j=1

j|Ej(i)| =

ri∑
j=1

j|Ej(i)|

≤ ri

∞∑
i=1

|Ej(i)|

< ri · 8(κ + K)i

= c(2 log i + 1)1/2(log i)1/2 · 8(κ + K)i

≤ 16c(κ + K)i log i,

so (4) holds with L = 16c(κ + K).
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3 Transience in R3

Fix a large integer M to be determined later. We superimpose a lattice Λ
with spacing M on R3; this defines a natural partition of the points of P .
Let V (Λ) be the set of cells of Λ.

Our approach is to find a set of conditions which make a cell S of Λ
“good”; whether or not S is good will be determined by the intersection of
DT(P) with S. We will show that the good sites define a process which dom-
inates a supercritical independent site percolation process. The definition of
“good” will then imply the existence of a subgraph H of DT(P), contained
entirely within the good sites, for which the resistance to infinity is finite.

Let M ′ = M/25 and superimpose a second lattice Λ′ with spacing M ′

such that each cell of Λ is partitioned by cells of Λ′ into 253 parts. By
DTS(P) we denote the restriction of the drawing DT(P) to cell S. Note
that by considering DT(P) as a drawing, we are defining DTS(P) to include
portions of edges and faces not fully contained within S.

We say that cell S ′ ∈ Λ′ is empty if it contains no points of P , and cell
S ∈ Λ is empty if one of its 253 subcells is empty. S ∈ Λ is dangerous if it
is at L∞-distance 1 from an empty cell, and is bad if st(DTS(P)) > 1.1κM ,
where κ is the same constant as in the statement of Lemma 3. Finally, S is
good if it is neither empty, dangerous or bad.

Let E(P), D(P) and B(P) denote the sets of empty, dangerous and bad
sites for the process P , respectively. Where there is no danger of confusion,
we will abbreviate these sets to E, D and B. The key lemma, which we prove
in Section 3.1, is the following.

Lemma 5. The random set of good sites dominates a supercritical indepen-
dent site percolation process.

The following result of Grimmett, Kesten and Zhang from [7] thus implies
that there exists an infinite connected component G of good sites such that
the resistance of G to infinity is finite (where adjacent sites are viewed as
being joined by a resistor of resistance 1). In the two subsequent lemmas, we
show how the definition of good allows us to find a subgraph H of DT(P)
contained within G with the same property, by “simulating” each resistor in
G by a bounded number of edges of H.

Theorem 6. Let G be the (unique) infinite component of a supercritical site
percolation process in Z3. Then the resistance of G to infinity is finite, with
probability one.
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Grimmett, Kesten and Zhang proved their result for bond percolation,
but the result also holds for site percolation.

We also require the following result, often referred to as the fundamental
theorem of electrical networks [3], page 318. To set the scene, let M1 and M2

be electrical networks, each containing a set U of vertices called the vertices
of attachment. We say that (M1, U) is equivalent to (M2, U) if whenever N is
a network sharing with each Mi the set U and nothing else, and we set some
vertices of N at certain potentials, then in N ∪ M1 and N ∪ M2 we obtain
precisely the same currents in the edges of N aside from those in M1,M2.
The intuition behind this definition of “equivalence” is that the network
N ∪M1 and N ∪M2 “look the same” with respect to currents everywhere in
N except possibly within M1 or M2. The fundamental theorem of electrical
networks states that no matter how complicated the graph M1 may be, from
the perspective of the rest of N it might as well just be the set of vertices U
and some resistors between these vertices. To be precise:

Lemma 7 (Fundamental Theorem of Electrical Networks). Every
network with attachement set U is equivalent to a network with vertex set U .

Say that H is a (m,n)-blowup of G if it can be obtained by replacing
each vertex v of G by a connected graph Gv with at most n and at least
dv vertices, and then replacing each edge e = uv of G by a path P (u, v) of
length at most l with endpoints in Gu and Gv and disjoint from all other
such paths. Then we have:

Lemma 8. Let G be a transient connected graph with maximum degree ∆
and let n,m be positive integers. If H is a (m, n)-blowup of G then H is
transient.

Proof. We define the graph Gf as follows. Let f(m, n) be some positive
integer function of m and n, and replace each edge uv of G by a path of
length f(m, n). If v is a vertex of G, clearly the resistance to infinity from v
to infinity in Gf is precisely f(m, n) times the resistance to infinity from v
in G, which is finite. Thus Gf is transient.

It remains to show that there is a function f(m, n) such that for any
(m,n)-blowup H of G, if Gf is transient then H is transient. We do this by
a sequence of transformations to H that yield such a graph Gf and increase
the resistance to infinity at every step.

First, in H we may replace each Gu by an equivalent graph Ru on du

vertices (these are the vertices of attachment), so that all external currents
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and potential differences remain the same, by Lemma 7. Further, there are
only a finite number of possibilities for Gu and the attachment vertices as ∆ is
bounded. Since in addition Gu is connected, the resistances along the edges
of Ru are all bounded above by some constant value r(n). By Rayleigh’s
monotonicity law, we may replace Ru by a spanning tree Tu of Ru, and the
overall resistance to infinity will increase.

In Tu the resistance between any pair of vertices is at most (n − 1)r(n),
as all vertices are joined by a path of length at most (n − 1). It seems
intuitive that replacing Tu by a star Su with hub u and leaves the vertices of
Tu, each edge of Su having resistance at least (n − 1)r(n), the resistance to
infinity from any vertex should increase. We prove something similar to this
by a sequence of transformations of Tu, each of which can not decrease the
resistance to infinity.

First select a root r ∈ V (Tu). Select a vertex v2 at graph distance 2 from
r, and let rv1v2 be a path of length 2 from r to v2. Suppose the resistances
along rv1 and v1v2 are a and b respectively. Create a new vertex v′1, and edges
rv′1, v1v

′
1 and v′1v2, and set the resistances along rv1, rv′1, v1v

′
1, v′1v2 and v1v2

to be 2a, 2a, 0, 2b and 2b respectively: this network is clearly equivalent to
the old one.

Cut edges v1v
′
1 and v1v2 and replace the path rv′1v2 by a single edge

with resistance 2(a + b). The first step increases all effective resistances in
the network, and the second has no effect on them. In this way we have
increased the degree of r by one.

Repeating this procedure at most n times, Tu will be replaced by a graph
S ′u in which r is adjacent to all other vertices. Each time we apply the pro-
cedure at most quadruples the largest resistance so in the end all resistances
are bounded above by some fixed value g(n).

We create Su from S ′u by (a) removing all edges of S ′u of which neither
endpoint is r, and (b) replacing the root r by an edge ru with resistance
0, so that r is connected to some vertex not in S ′u and u is incident to the
neighbours of r in S ′u. Neither operation decreases the resistance to infinity.

The final step is to replace each edge connecting neighbouring stars Su and
Sv with a path P (u, v) of length m. At this point, the hubs of neighbouring
stars are connected by a path consisting of two resistors of resistance at most
g(n) and m resistors of resistance 1. This is equivalent to a path of length
2g(n) + m. Taking f(m, n) = 2g(n) + m, this last graph is equivalent to Gf .
As the effective resistance to infinity rose at every step of this transformation,
if Gf is transient then H is transient, as claimed.
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In the preceding proof we glossed over the technicalities of what is meant
by “effective resistance to infinity” in the absence of a chosen vertex for the
resistance to infinity to be from. However, in a connected graph in which
every resistance is bounded, every node has either finite resistance to infinity
or infinite resistance to infinity. As we are only interested in the finitude of
this quantity and not a precise bound, we feel this imprecision is justified.

We now show that we can carry out the above replacement process in
the infinite cluster of good sites of Λ. As this cluster has finite resistance to
infinity by Lemma 5, this establishes:

Theorem 9. The simple random walk on DT(P) is transient in dimension
d ≥ 3, with probability one.

Proof of Theorem 9. All the essential ingredients in the proof occur in the
case d = 3; we thus restrict our attention to this case. The proof can be
exactly reproduced for d > 3 - only certain constants will change.

Given a cell S ∈ Λ, let Sm be the cell of Λ′ at the center of S, and let Sc

be the box with side length 13M/25 = 13M ′ and with the same center as S
and Sm. Note that by Theorem 6, the set of good sites, viewed as a graph
with edges between adjacent cells, has finite resistance to infinity. (Here and
for the remainder of the proof, adjacent is used to mean that the cells share
a face.) We exhibit a subgraph G = (V, E) of DT(P) contained within the
set of good sites of V (Λ) so that the following conditions hold:

(1) For any cell S, |V ∩ Sc| ≤ 6.6κM + 6

(2) Given adjacent cells S, S ′, there is a path from |V ∩ Sc| to |V ∩ S ′c|
disjoint from |V ∩ Sc| and |V ∩ S ′c| except at its endpoints and disjoint
from all other such paths. Furthermore, this path contains at most
2.2κM + 1 vertices of V .

It follows from Lemma 5 and Lemma 8 that G, and thus DT(P), has finite
resistance to infinity. It thus remains to prove (1) and (2).

As S is good, Sm contains a point; call it vS. Given adjacent cells S, S ′,
let `S,S′ be the line segment connecting vS, vS′ . As S and S ′ are both good,
st(DTS(P)) ≤ 1.1κM and st(DTS′(P)) ≤ 1.1κM . Thus `S,S′ crosses at most
2.2κM cells of DT(P). It is left as an exercise to the reader to show that
this implies there exists a path P (S, S ′) in G from vS to vS′ with at most
2.2κM edges, all of whose edges border Delaunay cells that intersect `S,S′ .
(A picture is given in Figure 2.)
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Figure 2: vS, vS′ and a possible path P (S, S ′) between them (shown in bold).
The smallest box containing vS is Sm; the next smallest is Sc.

We let G consist of the points {vS | S is good}, together with all paths
P (S, S ′) between adjacent good sites. We must check that (1) and (2) hold.
For any cell S, |V ∩ S| ≤ 6(1.1κM + 1) as V ∩ S is the union of six paths,
each with at most 1.1κM edges. It is immedate that |V ∩ Sc| < 6.6κM + 6,
i.e. (1) holds.

We now turn our attention to (2). Let `S,S′ and `S,S′′ be lines connecting
vS to vS′ and vS

′′ , and let 4 ∈ DT(P) be any Delaunay cell intersecting both
lines. It follows that the sphere C circumscribing 4 intersects both lines; if
any intersection is outside of Sc it follows immediately that C has diameter
at least 6M ′, as Sc has side length 13M ′ and `S,S′ and `S,S′′ intersect only at
vS, which has distance at least 6M ′ from all sides.

Recall that as S is good, every cell of Λ′∩S contains a point. Notice that
any sphere with diameter of length at least 6M ′ contains a cell of Λ′ in its
interior. (This can be seen by considering an axis-aligned cube inscribed in
such a sphere; in fact the cube must contain a cell of Λ′.) As C has empty
interior, it must have diameter less than 6M ′, so all intersections of C with
`S,S′ and `S,S

′′ are within Sc. It follows that if either P (S, S ′) or P (S, S ′′)
contains an edge of 4, this edge is fully contained within Sc. As 4 was
an arbitrary Delaunay cell intersecting both `S,S′ and `S,S′′ , it follows that

P (S, S ′) and P (S, S
′′
) are disjoint except perhaps within Sc. This proves the

first part of (2).
The second part of (2) is trivial as P (S, S ′) contains at most 2.2κM edges,

as noted above.

12



3.1 Proof of Lemma 5

It is not hard to see that, for a single site S, P (S ∈ E ∪D ∪B) can be made
small by taking M large (though we have not yet proved even this). However,
this fact on its own is insufficient to prove that the good sites dominate a
supercritical independent site percolation process. To see this, consider the
following process: fix an arbitrarily small positive ε, and let Y be a 0 − 1
Bernoulli random variable with P (Y = 1) = 1 − ε. Let Y = {Ys}s∈Zd be a
family of (0 − 1) random variables such that Ys = 1 precisely if Y = 1, and
let CY be the event that there exists an infinite open cluster in {s|Ys = 1}.
Then P (CY) = 1 − ε, but for any supercritical independent site percolation
process Y ′, P (CY ′) = 1. Thus, Y does not dominate any such process.

We thus need a result of Liggett, Schonmann and Stacey from [9], which
proves that if dependence of a family X has “limited range” and, for X ∈ X ,
P (X = 1) is sufficiently high, then X dominates a supercritical independent
process. To be more precise we make the following definitions.

Let X = {Xs}s∈Zd be a lattice-indexed familiy of 0− 1 random variables.
We say that X is a k-dependent family if, for each pair A, B ⊂ Zd such that
for all a ∈ A and b ∈ B, ‖a − b‖∞ > k, the families of random variables
{Xa}a∈A and {Xb}b∈B are independent of each other. Liggett, Schonmann
and Stacey proved the following theorem.

Theorem 10. Suppose that P (Xs = 1) > p for all s ∈ Zd. Then if p is
large enough then X is dominated from below by the product random field
with density ρ, where ρ is a positive constant depending on d, k and p. One
can make ρ arbitrarily close to 1 by taking p large enough.

With this result in our toolkit, we may proceed to the proof of Lemma 5.
We index the sites V (Λ) by picking an origin site arbitrarily, and exploit-

ing the self-duality of Zd to extend this indexing to the rest of the sites. We
will abuse notation by referring to sites, rather than their indices, as elements
of Zd. A few further notational points: we say that S and S ′ have distance
k (written d(S, S ′) = k) from each other if the L∞-distance between their
indices is k. For a set A ⊂ Λ, we write d(S, A) = min{d(S, S ′)|S ′ ∈ A}, and
define the distance d(A, B) between two subsets of Λ similarly. For a set A,
we also define N(A) =

⋃
S′|d(S′,A)=1 S ′ and N̄(A) = A ∪N(A).

We let XS be the indicator variable of the event {S /∈ E ∪D∪B}, i.e., of
the event that S is good. We will show that X = {XS}S∈Zd is a 2-dependent
family and that P (XS = 1) can be made arbitrarily close to 1 by taking

13



M large enough. Lemma 5 then immediately follows from Theorem 10 on
making P (XS = 1) large enough so that ρ is greater than the critical site
percolation probability in Z3.

To show that X is a 2-dependent family it suffices to prove that for all
XS ∈ X , XS is determined by the behavior of the Poisson process P in the
region N̄(S). For if this holds then if d(A, B) > 2, any event E1 depending
only on {XS|S ∈ A} is determined by the behaviour of P in⋃

S∈A

N̄(S) = N̄(A).

Similarly, any event E2 depending only on {XS|S ∈ B} is determined by the
behaviour of P on N̄(B). E1 and E2 are thus independent by the properties
of the Poisson process, as N̄(A) and N̄(B) are disjoint.

To see that {S /∈ E ∪D ∪ B} is determined by P ∩ N̄(S), it is useful to
write E ∪ D ∪ B = E ∪ D ∪ B′, where B′ = B − (D ∪ E). By definition,
{S ∈ E} is determined by P ∩ S, and {S ∈ D} is determined by P ∩N(S).

Figure 3: A geometric view of facts (a), (b) and (c) in two dimensions: note
that C intersects both S and R3 − N̄(S). In this case, if C ∩ N̄(S) (the
shaded area) contains no points of P aside from x and y, then 4 is a cell of
DT(P) precisely if z ∈ P and C ∩ (R3 − N̄(S)) contains no other points of
P .

We now turn our attention to the event {S ∈ B′}. We may assume
S /∈ D ∪ E, as this is determined by P ∩ N̄(S). Suppose S /∈ D ∪ E, but
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that the event {S ∈ B′} is not determined by P ∩ N̄(S). As {S ∈ B} is the
event that st(DTS(P)) > 1.1κM , it is certainly determined by DTS(P). If
DTS(P) is not determined by P ∩ N̄(S), then there is some tetrahedron 4
with corners {x, y, z, w} that intersects S, such that whether or not 4 is a
cell of DT(P) depends on the behaviour of P in R3− N̄(S). Considering the
sphere C that circumscribes 4, C must satisfy:

(a) C ∩ S is not empty.

(b) C ∩ (R3 − N̄(S)) is not empty.

(c) C ∩ N̄(S) ∩ P contains no points aside from one or all of x, y, z, w.

The fact that (a),(b) and (c) hold follows directly from the definition of the
Delaunay triangulation; Figure 3 gives a geometric view of what they state.
Conditions (a) and (b) imply that C contains one of the subcells T of N(S)
of side length M ′ = M/25 in its interior. Condition (c) then implies that
T ∩P = ∅, so that one of S∪N∞(S) is in E, and so by definition S ∈ E∪D,
a contradiction. Thus {S ∈ E ∪D ∪B} is determined by P ∩ N̄(S), so X is
a 2-dependent family.

It remains to show that P (XS = 1) can be made arbitrarily high. We
have

P (XS = 1) ≥ 1− P (S ∈ E) + P (S ∈ D) + P (S ∈ B) ,

and

P (S ∈ E) + P (S ∈ D) ≤ P (S ∈ E) + P (∃S ′ ∈ N(S), S ′ ∈ E)

≤ 27P (S ∈ E)

≤ 27 · 253 · P
(
[0, M/25]3 ∩ P = ∅

)
≤ 27 · 253 · e−(M/25)3 ,

which can be made arbitrarily small by choosing M large enough. Turning
our attention to P (S ∈ B), by Lemma 3 we have

P (S ∈ B) = P (st(DTS(P)) > (1 + 0.1)κM)

≤ e−0.1M/K log M ,

which can also be made arbitrarily small by taking M large enough as κ and
K do not depend on M . Thus P (XS = 1) can be made arbitrarily large, so
Lemma 5 holds.
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4 Conclusion

The authors are aware that the proofs presented here can be adapted to other
random graphs. In particular, for graphs satisfying “reasonable” conditions
on minimum and maximum degree and edge length, it should be possible to
reprove our results. On the other hand, the results will not necessarily be
optimal in other cases; by way of explanation we briefly discuss the Gilbert
disc and k-nearest neighbour models.

Gilbert’s disc model Gr connects points x, y of the Poisson process satis-
fying ‖x − y‖2 ≤ r. Adaptation of the above proofs should easily yield the
recurrence results for the Gr in Z2, for any r. In Zd, d ≥ 3, the proof tech-
nique should again apply; however, it will only prove that the simple random
walk on Gr is transient for all r sufficiently large. It would be nice to show
that for any r for which Gr contains an infinite connected component, the
simple random walk on that component is transient in Zd, d ≥ 3. Similarly,
the results should extend to the k-nearest neighbour model for all k in the
d = 2 case, and for k sufficiently large in the d ≥ 3 case. In both cases it will
be necessary to deal with some connectivity complications not present in the
Delaunay triangulation. We note that in both cases, a proof would yield an
upper bound on the percolation threshold, in terms of r, for the Gilbert disc
model (though a better bound follows directly from comparison with bond
percolation in this case) and in terms of k for the k-nearest neighbour model.

We also believe it would be interesting to study the mixing or cover time
of the walk on a finite portion of such a graph. In fact, such quantities have
been studied for finite graphs using the connection with electrical networks;
see, e.g., [5].

In [10], Thomassen proves that given an infinite graph G, if f(k) denotes
the smallest number of vertices in the boundary of a connected subgraph
with k vertices, then the simple random walk on G is transient if

∑
f(k)−2

converges. This result does not apply to such random graphs as those dis-
cussed above, due to the presence of locally “bad” areas of the graph where
such a condition will not hold. However, it may be possible to show that
if G is a graph for which such a condition holds “almost everywhere with
probability 1” then the simple random walk on G is almost surely transient.
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