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Abstract

We disprove a conjecture of Nagy on the maximum number of copies N(G,H) of a fixed
graph G in a large graph H with prescribed edge density. Nagy conjectured that for all G,
the quantity N(G,H) is asymptotically maximised by either a quasi-star or a quasi-clique.
We show this is false for infinitely many graphs, the smallest of which has 6 vertices and 6
edges. We also propose some new conjectures for the behaviour of N(G,H), and present some
evidence for them.

1 Introduction

Let G be a fixed small graph, let β ∈ (0, 1), and let n be a large positive integer. The problem of

asymptotically minimizing the number of copies of G in a large graph H on n vertices, with edge

density β, is a very well-studied problem in extremal graph theory. It generalises the forbidden

subgraph problem, and has received much attention in recent years. For instance, a famous

conjecture of Sidorenko [15] states that when G is bipartite, the minimiser H is quasirandom,

and a celebrated theorem of Reiher [13] solves the problem for complete graphs (the minimiser

is close to a Turán graph).

In this paper we will study the opposite problem: given G, how do we maximise the number

of copies of G in H? As before, H will have order n and edge density β, and, as before,

we are mainly interested in asymptotics: we will write “maximiser” for “asymptotic maximiser”

throughout. This problem also has a long history, going back at least to Ahlswede and Katona [1],

who studied the case when G = P2, the path with two edges. (Throughout this paper, Pl denotes

a path with l edges.) Roughly speaking, Ahlswede and Katona proved that, for β > 1
2 , the

maximiser is a quasi-clique, i.e., a clique K, with another vertex joined to a subset of V (K),

together with some isolated vertices; we note that the size of the clique is uniquely determined
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by n and β. When β < 1
2 , they proved further that the maximiser is instead a quasi-star: the

complement of a quasi-clique; the parameters of the quasi-star are again uniquely determined by

n and β. In short, the maximiser is first a quasi-star and then a quasi-clique, with the “flip”

occurring at β = 1
2 . The paper [1] in fact contains an exact result for G = P2, which is surprisingly

complicated.

On the other hand, for some graphs G, the maximiser is always a quasi-clique, regardless of

β. Alon showed that this is the case for any graph with with α∗(G) = v/2, where α∗(G) is the

fractional independence number of G, and v is the number of vertices of G; see Section 2 for a

definition of the fractional independence number of a graph. A result of Janson, Oleszkiewicz

and Ruciński [8] can be used to show that this condition is in fact an “if and only if” condition,

that is, if the maximiser of G is a quasi-clique for all β, then α∗(G) = v/2. Alon’s result (which

was originally formulated in a different way) was generalised to hypergraphs by Friedgut and

Kahn [6].

These results leave many questions open. To restate the basic one: given a small graph G

on v vertices, we would like to know which large graphs H asymptotically maximise N(G,H),

the number of unlabelled copies of G in H, where H runs over all graphs on n vertices and

edge density β. Interest in this problem was revitalised by its connection with graphons, and

subsequently by the work of Nagy [11], who solved it for G = P4. Nagy’s result is that for P4,

as for P2, the maximiser is first a quasi-star and then a quasi-clique, with the flip occurring this

time at β = 0.0865..., instead of 1
2 . By contrast, odd-length paths such as P3 are covered by

Alon’s theorem: for them, the maximiser is always a quasi-clique.

Note that, up until now, we have been tacitly assuming that the maximiser is in some sense

unique; however, this might conceivably not be the case, so we should strictly speaking write “an

(asymptotic) maximiser”, rather than “the maximiser”.

At the end of his paper [11], Nagy posed three questions. The first asked for an exact, not just

asymptotic, result for P4. The second asked whether, for every graph G, and every edge density

β, the quantity N(G,H) is always (asymptotically) maximised when H is either a quasi-star

or a quasi-clique. The third question was more cautious: given G, is there always a nontrivial

threshold βG < 1, such that the quasi-clique (asymptotically) maximises N(G,H) for β > βG?

While the first question remains out of reach, the third was recently answered in the affirmative

by Gerbner, Nagy, Patkós and Vizer [7], using a recent result of Reiher and Wagner [14] (who had

in turn extended an earlier result of Kenyon, Radin, Ren and Sadun [10]). Reiher and Wagner

answered Nagy’s second question affirmatively for stars, i.e., they proved that the maximiser is

first a quasi-star and then a quasi-clique when G is a star, with the flip always occurring at β < 1.

Both [10] and [14] make extensive use of graphons.

In this paper, we give a negative answer to the second question. Specifically, we exhibit a

6-vertex graph G6, such that neither the quasi-star nor the quasi-clique asymptotically maximise

N(G6, H) at any edge density β ∈ (0, 0.016). More generally, we show that any graph G on v
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vertices satisfying α∗(G) > max(α(G), v/2) is also a counterexample.

The plan of this paper is as follows. In Section 2 we introduce some basic definitions and

notation, as well as the graphs T en(q), which lie at the heart of the paper. Section 3 contains

our main result, which provides a family of counterexamples to Nagy’s conjecture. In Section 4

we describe the prior work of Janson, Oleszkiewicz and Ruciński mentioned above, and discuss

how it relates to these counterexamples. Finally, in Section 5 we propose some new conjectures,

which we hope will inspire further progress in this area.

2 Definitions and notation

For a fixed small graph G on v vertices, we write

ex(n, e,G) = max{N(G,H) : |H| = n, e(H) 6 e},

whereN(G,H) is the number of unlabelled copies ofG inH. We will also wish to consider labelled

copies of G; in this case we will fix a labelling Gl of G, and work with Nl(Gl, H) = N(G,H)|AutG|
instead. For example, N(P4, C7) = 7 and N(P4,K5) = 60. With G and β ∈ [0, 1] fixed, a family

of graphs (Hn)n≥1, such that each Hn has n vertices and edge density β+O(1/n), is an asymptotic

maximiser for G at edge density β if

N(G,Hn) = (1 + o(1))ex(n, bβn2/2c, G).

A graph homomorphism fromGl toH is a map f : V (Gl)→ V (H) such that {f(u), f(w)} ∈ E(H)

for all {u,w} ∈ E(Gl). We write hom(Gl, H) for the number of homomorphisms from Gl to H.

Given a family of graphs (Hn)n>1 such that |V (Hn)| = n, we have that Nl(G,Hn) 6 hom(Gl, Hn)

and also Nl(G,Hn) = (1 + o(1)) hom(Gl, Hn) as n→∞. As such, we define

t(Gl, Hn) = lim
n→∞

Nl(Gl, Hn)

nv
= lim

n→∞

hom(Gl, Hn)

nv
;

the limit will exist for all the families Hn we consider. We will switch between working with

hom(Gl, Hn), Nl(G,Hn) and t(Gl, Hn), depending on which is convenient at the relevant time.

Given a graph G, a function φ : V (G)→ [0, 1] such that φ(u)+φ(w) 6 1 for all {u,w} ∈ E(G)

is known as a fractional independence weighting of G. The fractional independence number of

G, written α∗(G), is defined as the maximum of
∑

u∈V (G) φ(u) over all fractional independence

weightings of G. We will make crucial use of the following result of Nemhauser and Trotter [12]:

any graph G has a maximal weighting (one that realises α∗(G)) in which all the weights are either

0, 1
2 or 1. As is customary, we write α(G) for the usual independence number of G, that is, α(G)

is the size of the largest independent set in G. Given an independent set X ⊆ V (G), the function

φ : V (G)→ {0, 1}, with φ(u) = 1 if u ∈ X and φ(u) = 0 otherwise, is a fractional independence

weighting of G. Thus we have that α∗(G) > α(G) for all graphs G.
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We now turn to some specific families of graphs. Given n and e ≤
(
n
2

)
, there is a unique

quasi-clique Ke
n with n vertices and e edges. To define it, we first write e =

(
a
2

)
+ b, where

0 ≤ b < a. The graph Ke
n is a complete graph Ka with a vertices, with an additional vertex

joined to b vertices of Ka, and n− a− 1 isolated vertices. Likewise, there is a unique quasi-star

Sen with n vertices and e edges; this is just the complement of Ke′
n , where e′ =

(
n
2

)
− e.

Here we will be interested in asymptotics only. Thus we will replace the number of edges

e by the (asymptotic) edge density β = 2e/n2. For asymptotic purposes, Ke
n is a clique of size√

βn, and V (Sen) can be partitioned into two sets RS (red vertices) and BS (blue vertices), where

the red vertices span a clique of size (1 −
√

1− β)n, the blue vertices form an independent set

of size
√

1− βn, and every blue vertex is joined to every red vertex. Here, and in what follows,

we omit floor functions for ease of notation; our “approximate versions” of Ke
n, S

e
n and (in the

next paragraph) T en(q) will not have exactly n vertices and e edges. However, we will have, for

instance, e(T en(q)) = (1 +O (1/n)) e, and this is more than enough for our asymptotic estimates.

Let q ∈ [0, 1]. The following graph T = T en(q), with (asymptotically) n vertices and e edges,

will prove useful. We partition the vertices of T into three sets YT (yellow), RT (red) and BT
(blue), with the following sizes:

|YT | =
√
βqn,

|RT | =
(

1−
√

1− β (1− q2)
)
n,

|BT | =
(√

1− β (1− q2)−
√
βq
)
n.

The sets YT and RT both span cliques, while BT is an independent set. Also, every vertex in

RT is connected to every vertex in YT and BT . It is easy to check that T en(q) has the required

number of vertices and edges. Moreover, we have that T en(0) = Sen and T en(1) = Ke
n, so that T en(q)

interpolates between Sen and Ke
n. See Figure 1 for a picture of Sen and T en(q).

RS

|RS | = (1−
√
1− β)n

|BS | =
√
1− βn

BS

Se
n T e

n(q)

|BT | = (
√

1− β(1− q2)−
√
βq)n

|RT | = (1−
√

1− β(1− q2))n

|YT | =
√
βqn

RTYT BT

Figure 1: The graphs Sen and T en(q) where e = βn2

2 . The shaded sets are cliques, while the white

sets are independent. A black line between two sets indicates they are fully connected.
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3 Main result

In this section we prove the following theorem, which disproves the conjecture of Nagy.

Theorem 1. Let Gl be a graph on v vertices such that α∗(Gl) > max
(
α (Gl) ,

v
2

)
. Fix q ∈ (0, 1).

Then there exists ε = ε(Gl, q) > 0 such that, for all β ∈ (0, ε), we have

t (Gl, T
e
n (q)) > max (t (Gl,K

e
n) , t (Gl, S

e
n)) .

We remark that there are infinitely many graphs G that have α∗(G) > max
(
α (G) , v2

)
. For

example, for a > 3, b > 2, consider the following graph that has a + b + 1 vertices. We start

by taking a clique Ka, we then add a single vertex u to our graph and connect it to one vertex

of Ka. We finally add b more vertices to our graph, and connect them all to u. It is easy to

see that α∗(G) = b + a
2 , α(G) = b + 1 and v

2 = a+b+1
2 . The smallest such graph satisfying

α∗(G) > max
(
α (G) , v2

)
occurs when a = 3 and b = 2. We call this graph G6, and we study it

more carefully in Section 3.1.

The proof of Theorem 1 will follow from the two homomorphism counting lemmas below;

however we first need to introduce some more notation. Given a labelled graph Gl, let Φ(Gl)

be the set of fractional independence weightings of Gl in which every vertex receives a weight in

{0, 1
2 , 1}. Given φ ∈ Φ(Gl), let

Rφ =
{
w ∈ V (G) : φ(w) = 0

}
,

Yφ =
{
w ∈ V (G) : φ(w) =

1

2

}
,

Bφ =
{
w ∈ V (G) : φ(w) = 1

}
,

and let rφ = |Rφ|, yφ = |Yφ|, and bφ = |Bφ|. For all q ∈ [0, 1], we define

y(q) =
√
βq,

r(q) = 1−
√

1− β(1− q2),

b(q) =
√

1− β(1− q2)−
√
βq.

Recall that for any q ∈ [0, 1], the graph T en(q) has three vertex classes YT , RT and BT , with

|YT | = y(q)n, |RT | = r(q)n, and |BT | = b(q)n, where YT and RT both span cliques, BT is an

independent set, and every vertex in RT is connected to every vertex in YT and BT .

Lemma 1. Let Gl be a labelled graph, and fix β, q ∈ [0, 1]. Then

t (Gl, T
e
n (q)) =

∑
φ∈Φ(Gl)

y(q)yφr(q)rφb(q)bφ .
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Lemma 2. Let Gl be a labelled graph on v vertices with no isolated vertices. Fix q ∈ (0, 1), and

let β → 0. Then there exist constants C1 = C1(Gl, q) > 0 and C2 = C2(Gl) > 0 such that the

following all hold:

1. t (Gl,K
e
n) = β

v
2 ,

2. t (Gl, T
e
n (q)) = C1

(
βv−α

∗(G) +O
(
βv−α

∗(G)+ 1
2

))
,

3. t (Gl, S
e
n) = C2

(
βv−α(G) +O

(
βv−α(G)+1

))
.

In Corollary 3 below we give explicit values of the constants C1 and C2. We remark that, just

as with the constants C1 and C2, the constants hidden in the big O notation in this lemma may

depend on Gl and q, but no other variables.

Proof of Lemma 1. Given a homomorphism f from Gl to T en(q), we give a weighting φf to the

vertices of Gl in the following way:

φf (u) =


0 if f(u) ∈ RT ,
1
2 if f(u) ∈ YT ,
1 if f(u) ∈ BT .

It is easy to see that φf is a fractional independence weighting of Gl. Given φ ∈ Φ(Gl), let

homφ(Gl, T
e
n(q)) be the number of homomorphisms f from Gl to T en(q) such that φf = φ, and let

tφ(Gl, T
e
n(q)) = lim

n→∞

homφ(Gl, T
e
n(q))

nv
.

A homomorphism f from Gl to T en(q) has the property that φf = φ if and only if f(Rφ) ⊆ RT ,

f(Yφ) ⊆ YT , and f(Bφ) ⊆ BT . Therefore

tφ (Gl, T
e
n (q)) = y(q)yφr(q)rφb(q)bφ . (1)

As each homomorphism from Gl to T en(q) gives rise to a fractional independence weighting of Gl
as described above, we have that

t(Gl, T
e
n(q)) =

∑
φ∈Φ(Gl)

tφ(Gl, T
e
n(q)). (2)

Combining (1) with (2) gives the result.

Proof of Lemma 2. We start by proving the first part of the lemma. The quasi-clique Ke
n consists

of a clique X on
√
βn vertices, and (1 −

√
β)n isolated vertices. As Gl has no isolated vertices,
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a map f : V (Gl)→ V (Ke
n) is a homomorphism from G to Ke

n if and only if f (V (Gl)) ⊆ V (X),

and so t (Gl,K
e
n) = β

v
2 , as required.

We now proceed by proving the remaining two parts of the lemma. Recall that the Taylor

series for 1−
√

1− x about 0 is x
2 +O(x2). Thus, as β → 0, we have that

r(q) =
β
(
1− q2

)
2

+O
(
β2
)
,

b(q) = 1 +O
(√

β
)
.

Therefore, combining this with (1) from the proof of Lemma 1, we have that

tφ (Gl, T
e
n (q)) =

(
1− q2

2

)rφ
qyφ
(
β

(
rφ+

yφ
2

)
+O

(
β

(
rφ+

yφ
2

+ 1
2

)))
, (3)

for all φ ∈ Φ(Gl). Suppose first that q = 0, so that we are counting homomorphisms into Sen. In

order for (3) to not equal zero, we must have that yφ = 0, which corresponds precisely to there

being no vertex u ∈ V (Gl) such that φ(u) = 1
2 . In this case, we can rewrite (3) as

tφ(Gl, S
e
n) = 2−rφ

(
βrφ +O

(
β(rφ+1)

))
. (4)

We remark that since q = 0, we have b(q) = 1 +O(β) rather than b(q) = 1 +O(
√
β), and so our

correction term in (4) is an improvement over that in (3). Among all φ ∈ Φ(Gl) such that yφ = 0,

we have that rφ > v − α(Gl), and equality occurs if and only if
∑

u∈V (Gl)
φ(u) = α(Gl). Let C ′2

be the number of φ ∈ Φ(Gl) such that yφ = 0 and
∑

u∈V (Gl)
φ(u) = α(Gl). Then, combining (4)

with (2) from the proof of Lemma 1, we have that

t(Gl, S
e
n) = 2α(Gl)−vC ′2

(
βv−α(Gl) +O

(
βv−α(Gl)+1

))
,

completing the proof of the third part of the lemma.

To prove the second part of the lemma, we proceed in a similar fashion. Fix q ∈ (0, 1).

For all q in this range, we have that y(q), r(q), b(q) > 0. For all φ ∈ Φ(Gl) we have that

rφ +
yφ
2 > v − α∗(Gl), and equality occurs if and only if

∑
u∈V (Gl)

φ(u) = α∗(Gl). Thus for a

suitable constant C1, as in the previous case, we have that

t (Gl, T
e
n (q)) = C1

(
βv−α

∗(Gl) +O
(
βv−α

∗(Gl)+
1
2

))
,

as required.
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Corollary 3. Let α = α(Gl) and α∗ = α∗(Gl). For each 0 6 i 6 v − α∗, let C̃i be the number

of φ ∈ Φ(Gl) such that
∑

u∈V (Gl)
φ(u) = α∗ and rφ = i. Let A(Gl) be the number of independent

sets X in Gl such that |X| = α. Then

C1 =

v−α∗∑
i=0

C̃i

(
1− q2

2

)i
q2(v−α∗−i),

and

C2 = 2α−vA(Gl).

Proof. The calculation for C1 follows directly from the proof of Lemma 2, by taking care to

calculate the “suitable constant” mentioned at the end of the proof.

To calculate C2, we first note that if φ ∈ Φ(Gl) is such that yφ = 0 and
∑

u∈V (Gl)
φ(u) = α,

then Bφ is an independent set in Gl, and bφ = α(G). On the other hand, given an independent

set X ∈ V (Gl), the weighting φ : V (Gl) → {0, 1}, given by φ(u) = 1 if and only if u ∈ X, is

a fractional independence weighting of Gl with yφ = 0 and
∑

u∈V (Gl)
φ(u) = |X|. Thus C ′2, as

defined in the proof of the theorem, is equal to A(Gl), and so the second part of the corollary

follows.

Theorem 1 follows immediately from Lemma 2. Indeed, if α∗(G) > max
(
α (G) , v2

)
, and

q ∈ (0, 1), then both t(Gl,K
e
n) = o(t(Gl, T

e
n(q))) and t(Gl, S

e
n) = o(t(Gl, T

e
n(q))) as β → 0.

Another consequence of Lemma 2 is that, as β → 0, we have that t(Gl,K
e
n) = o(t(Gl, S

e
n)) if

α(G) > v/2 and t(Gl, S
e
n) = o(t(Gl,K

e
n)) if α(G) < v/2. When α(G) = v/2, we may apply the

following result, which was proved independently by many people (see Cutler and Radcliffe [4]

for references and a short proof).

Theorem 2. [4] If G is a graph with n vertices, α(G) ≤ l and 0 ≤ k ≤ n, then

ik(G) ≤ ik(Kn1 ∪Kn2 ∪ · · · ∪Knl),

where
∑
ni = n, n1 ≤ n2 ≤ · · · ≤ nl ≤ n1 + 1, and ik(G) denotes the number of independent sets

of size k in G.

Taking l = k = v/2, we see that ik(G) ≤ ik(K2 ∪K2 ∪ · · · ∪K2) = 2v/2, so that, in our notation,

A(Gl) ≤ 2v/2 when α(G) = v/2. Together with Lemma 2 and Corollary 3, this implies the

following.

Theorem 3. With asymptotic notation as β → 0,

max{t(Gl, Sen), t(Gl,K
e
n)} ∼ t(Gl,Ke

n) if and only if α(G) ≤ v/2.
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3.1 An explicit counterexample

Throughout this subsection, Gl will be the (labelled) graph with V (Gl) = [6] and

E(Gl) =
{
{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}

}
,

as in Figure 2, and T en will be the graph T en(1/
√

2). Let G6 be an unlabelled copy of Gl. We will

show that, for β ∈ (0, 0.016), the graph T en has many more copies of G6 than either Ke
n or Sen.

1

2

3 4

5

6

Figure 2: The labelled graph Gl; the unlabelled version is G6.

Theorem 4. For β ∈ (0, 0.016), we have t(Gl, T
e
n) > t(Gl,K

e
n) > t(Gl, S

e
n).

Proof. First, as in the proof of Lemma 2, it is easy to see that t(Gl,K
e
n) = β3. We next turn

to calculating t(Gl, S
e
n). Recall that Sen = T en(0), and that y(0) = 0, r(0) = 1 −

√
1− β and

b(0) =
√

1− β. By Lemma 1, we have that

t(Gl, S
e
n) =

∑
φ∈Φ′(Gl)

r(0)rφb(0)bφ , (5)

where Φ′(Gl) is the set of fractional weightings of G in which every vertex receives weight 0 or

1. Given such a fractional weighting φ, let cφ be a colouring of the vertices of G where vertices

such that φ(u) = 0 are coloured red, and vertices with φ(u) = 1 are coloured blue. In Figure 3

below, we classify the elements of Φ′(Gl) by the number of blue vertices in their corresponding

colourings. Note that no such colouring can have more than α(Gl) = 3 blue vertices.

From Figure 3 and (5) we see that

t(Gl, S
e
n) = r6 + 6r5b+ 9r4b2 + 3r3b3 = r3

(
6r2b+ 9rb2 + 3b3

)
, (6)

where r = r(0) and b = b(0).
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0

1

2

3

1

6

9

3

No. of blue
vertices in cφ

No. of φ ∈ Φ′(Gl)

Figure 3: The number of φ ∈ Φ′(Gl) whose colouring has a given number of blue vertices.

To calculate t(Gl, T
e
n), we now let

y = y

(
1√
2

)
=

√
β

2
,

r = r

(
1√
2

)
= 1−

√
1− β

2
,

b = b

(
1√
2

)
=

√
1− β

2
−
√
β

2
.

In a similar fashion to the above, we need to classify all φ ∈ Φ(Gl). Given φ ∈ Φ(Gl), let cφ be a

colouring of the vertices of G where vertices such that φ(u) = 1
2 are coloured yellow, vertices such

that φ(u) = 0 are coloured red, and vertices with φ(u) = 1 are coloured blue. Again, as above,

one can list all φ ∈ Φ(Gl) by keeping track of how many red and blue vertices the colouring cφ
has. We omit the table listing these colourings, but as before we see that

t(Gl, T
e
n) = (y + r)6 + 2(y + r)3r2b+ 2(y + r)2r3b+ 2(y + r)4rb

+ 2r4b2 + 6(y + r)r3b2 + (y + r)3rb2 + 3r3b3. (7)

Numerically, we find that the theorem holds for β ∈ [0, 0.016]; see Figure 4 for a graph of

the the functions t(Gl, T
e
n), t(Gl,K

e
n) and t(Gl, S

e
n) over this interval. We remind the reader that

e = βn2

2 , and also that the quantities r and b are different in equations (6) and (7). Namely they

are r(0) and b(0), and r(1/
√

2) and b(1/
√

2) respectively.

Note that we do not claim that T en is the maximiser for the graph G6. We have only shown

that there exists β such that the maximiser for G6 at edge density β is neither Ke
n nor Sen.

Nonetheless, we do believe that, for all graphs G, and for all edge densities β ∈ [0, 1], some graph

family Hn = T en(q) is the maximiser. We refer the reader to Section 5 for further details on this.
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Figure 4: A graph comparing the functions t(Gl,K
e
n), t(Gl, S

e
n) and t(Gl, T

e
n) on the interval

β ∈ [0, 0.018]. The blue solid line is the function t(Gl, T
e
n), the yellow dotted line is the function

t(Gl,K
e
n), and the red dashed line is the function t(Gl, S

e
n). We have that t(Gl,K

e
n) = t(Gl, T

e
n)

when β ≈ 0.01613474.

4 The random connection

With some effort, a counterexample to Nagy’s conjecture can also be read out of some previous

results of Janson, Oleszkiewicz and Ruciński [8]. (We discovered this paper only after we had

proved Theorem 1.) As part of their celebrated study on the upper tail for subgraph counts in

random graphs, Janson, Oleszkiewicz and Ruciński proved the following (in our notation).

Theorem 5. Let G be a graph on v vertices with fractional independence number α∗(G). Then,

with β = 2e/n2,

N(n, e,G) = Θ(nvβv−α
∗(G)).

Since it is easy to see that N(G,Ke
n) = Θ(nvβv/2) and N(G,Sen) = Θ(nvβv−α(G)), Theorem 5

by itself shows that neither the quasi-clique nor the quasi-star asymptotically maximises N(G,H),

at sufficiently small edge density β, if α∗(G) > max(α(G), v/2). To disprove Nagy’s conjecture,

one only has to exhibit a single graph satisfying the last condition (for instance, G6 - there is no

such graph on five or fewer vertices).
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It is worth describing the lower bound construction in [8], and its relationship to the graphs

T en(q). (The construction in [8] is expressed in terms of the solution to a linear program; we

rephrase it in our notation.) Given a graph G on v vertices with fractional independence number

α∗(G), let φ be a weighting of V (G) realizing α∗(G). As noted in Section 2, we may assume that

φ takes values in {0, 1
2 , 1}. Let c be a sufficiently small constant. For each vertex u ∈ V (G), we

“blow up” u to an independent set Bu of size cnβ1−φ(u). For each edge {u,w} ∈ E(G), we put a

complete bipartite graph (containing c2n2β2−φ(u)−φ(v) ≤ c2n2β edges) between Bu and Bv. Call

the resulting graph H. For sufficiently small c, the graph H has at most n vertices and at most

|E(G)|c2n2β ≤ βn2/2 edges. Moreover, H contains
∏
u cnβ

1−φ(u) = cvnvβv−α
∗(G) copies of G.

Janson, Oleszkiewicz and Ruciński made no attempt to optimise the constant, and indeed

it is not hard to see that one can improve on their construction by making H[Bu] a clique

whenever φ(u) 6= 1, and adjusting the sizes of the Bu. In other words, we amalgamate those

Bu for which φ(u) is constant, to get just three sets B0, B1 and B1/2, “fill in” B0 and B1/2 with

cliques, and impose the conditions |H| = n and |E(H)| = e while keeping |Bi| = Θ(nβ1−i). The

result of doing this is just the graph T en(q); the sets B0, B1/2 and B1 are just RT , YT and BT
respectively. Thus, for the lower bound, one only needs to consider a one-parameter family T en(q),

instead of a separate construction for each G, and, moreover, this family T en(q) simply consists

of graphons with at most three “steps”. We conjecture in the next section that some T en(q) is

always asymptotically optimal.

For completeness, we sketch the proof of the upper bound from [8]. To do this, we first

re-examine the lower bound construction, where each vertex u in the small graph G is “blown

up” to an independent set Bu of size cnxu , for some 0 ≤ xu ≤ 1, and in which the sought-after

copies of G are compatible with the partition (Bu)u∈V (G), i.e., we only look for copies of G where

each u ∈ V (G) is located in Bu. Now, a simple random argument [6, 8] shows that, with G

fixed and |G| = v, any large graph H has a vertex partition V (H) =
⋃
u∈V (G)Bu in which at

least v−vN(G,H) of the N(G,H) copies of G in H are compatible (in the above sense) with

the partition. So it is enough to show, given a graph H, together with a partition of V (H)

into v = |V (G)| parts, labelled with the vertices of G, that H contains at most Θ(nvβv−α
∗(G))

compatible copies of G.

Fixing G, and given a partition of V (H), we now aim to choose the edges of H so as to

maximise the number N c(G,H) of compatible copies of G in H. Clearly, if there is no edge from

u to w in G, we should not put any edges between Bu and Bw in H. For edges {u,w} of G, if

we make E(Bu, Bw) a complete bipartite graph, we have exactly the lower bound construction.

The question remains: can we increase N c(G,H) by increasing the sizes of the parts Bu, while

thinning out the edge sets E(Bu, Bw) for {u,w} ∈ E(G)? It turns out that the answer is no.

To see this, we again revisit the lower bound construction, in which the parts Bu have sizes
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cnxu , where the vertex weights xu comprise a solution to the following linear program.

Maximise
∑
u

xu subject to 0 ≤ xu ≤ 1 and uw ∈ E(G)⇒ xu + xv ≤ 2− ε. (8)

Here, ε = − log (β/2) / log n, so that β/2 = n−ε. Given a weighting φ of V (G) realizing α∗(G), a

solution to (8) can be obtained by setting

xu = 1− ε(1− φ(u)). (9)

The dual program is to find nonnegative edge weights yuw and vertex weights zu of G as below.

Minimise
∑
u

zu + (2− ε)
∑

uw∈E(G)

yuw subject to u ∈ V (G)⇒ zu +
∑

uw∈E(G)

yuw ≥ 1. (10)

By linear programming duality, the minimum in (10) is exactly the maximum in (8), and, by (9),

this maximum is just v − ε(v − α∗(G)) (yielding the lower bound N c(G,H) ≥ Cnvβv−α∗(G)).

Now each compatible copy of G in H may be considered as a v-vertex hyperedge on V (H);

together these form the hypergraph H, whose edges correspond to compatible copies of G in H.

Rationalizing a solution to (10) by auw = dMyuwe and bu = dMzue, where M is a large positive

integer, we form a sequence of subsets of V (H) by taking each Bu bu times and each Bu ∪ Bw
auw times. By construction, and (10), each vertex in each Bu is covered by at least M of these

subsets. For a subset V ′ ⊂ V (H), write Tr(H, V ′) = {h ∩ V ′ : h ∈ H} for the trace of H on V ′.

Then, by Shearer’s lemma [3],

N c(G,H) = |H| ≤

 ∏
u∈V (G)

|Tr(H, Bu)|bu
∏

uw∈E(G)

|Tr(H, Bu ∪Bw)|auw
1/M

≤

 ∏
u∈V (G)

nbu
∏

uw∈E(G)

n(2−ε)auw

1/M

→
∏

u∈V (G)

nzu
∏

uw∈E(G)

n(2−ε)yuw

= nv(β/2)v−α
∗(G),

as M → ∞, where, in the last line, we have used the duality theorem of linear programming.

This is the sought-after upper bound.

We mention for completeness that Janson, Oleszkiewicz and Ruciński’s results were gener-

alised to hypergraphs by Dudek, Polcyn and Ruciński [5].

5 Conjectures

In this section, we make some new conjectures about the asymptotic value of ex(n, e,G). These

are essentially the simplest modifications of Nagy’s conjecture which fit the known data.
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First we define the concept of an upper profile boundary. For a fixed labelled graph Gl on v

vertices, we look at the number of homomorphisms hom(Gl, H) from Gl to H, where H ranges

over the set of all unlabelled graphs. To each graph H with n vertices and e edges, we associate

the point

p(Gl, H) = (2e/n2,hom(Gl, H)/nv) ∈ [0, 1]2,

whose x-coordinate is the edge density of H, and whose y-coordinate is the homomorphism density

of Gl in H. In this way, each labelled graph Gl gives rise to a profile P (Gl) ∈ [0, 1]2, defined as

the closure of the set of all the points p(Gl, H). The upper profile boundary of Gl is the upper

boundary of P (Gl); it is not hard to see that this boundary is the graph of a function f(Gl, β)

of the edge density β. See [9] (page 28) for a picture of the profile of K3.

We return to the graphs T en(q). For a given graph Gl, and a given edge density β (of H),

define fT (Gl, β) by the formula

fT (Gl, β) = sup
q∈[0,1]

t(Gl, T
e
n(q)),

where e = βn2/2, and let q(Gl, β) ∈ [0, 1] be the value of q at which the supremum is attained.

In other words, the function fT (Gl, β) is the normalised asymptotic number of copies of Gl in

the optimised T -graph. Now we are ready to state our conjectures.

Conjecture 1. For all graphs Gl and all β ∈ [0, 1], we have that f(Gl, β) = fT (Gl, β). In other

words, for all graphs Gl and all edge densities β, some graph family Hn = T en(q) asymptotically

maximises hom(Gl, Hn) and Nl(Gl, Hn).

Conjecture 2. For each graph Gl, we have that q(Gl, β) is an increasing function of β.

A slightly stronger version of Conjecture 1 can be most clearly stated in terms of the “STK

notation”. Indeed, it appears that, for each graph Gl, there is a partition of the set [0, 1] of edge

densities into three sets S, T and K (we suppress the dependence on Gl) such that for β ∈ S, the

quasi-star (asymptotically) maximises N(Gl, H), for β ∈ T some graph T en(t) (with t ∈ (0, 1))

maximises N(Gl, H), and for β ∈ K, the quasi-clique Ke
n maximises N(Gl, H). If in addition

Conjecture 2 holds, these partitions have a particularly simple form. Indeed, in keeping with the

theorem of Reiher and Wagner [14], only four possibilities can arise:

Type K: K = [0, 1],

Type SK: S = [0, γ] and K = [γ, 1], for some γ ∈ (0, 1),

Type TK: T = [0, γ] and K = [γ, 1], for some γ ∈ (0, 1),

Type STK: S = [0, γ], T = [γ, δ] and K = [δ, 1], for some 0 < γ < δ < 1.

With this notation, Alon [2] characterised graphs of type K, Ahlswede and Katona [1] proved

that P2 is type SK, Nagy [11] proved that P4 is type SK and conjectured that all graphs are either

type K or SK, and Reiher and Wagner [14] proved that stars are type SK, enabling Gerbner,
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Nagy, Patkós and Vizer [7] to prove that the type always ends in –K. In contrast, the results

of Janson, Oleszkiewicz and Ruciński only have a bearing on the start of the type; for instance,

the type of G6 cannot begin with either S– or K–, and we conjecture that it is in fact TK. We

remark that we are unaware of any graphs of type STK, and would be very interested to know

whether or not such graphs exist. See Figure 5 in the Appendix for a summary of the various

types of all connected1 graphs on at most 5 vertices.

We conclude our paper with a weaker version of Conjecture 1, concerning the behaviour of f

and fT as β → 0:

Conjecture 3. As β → 0, we have that f(Gl, β) ∼ fT (Gl, β) for all graphs Gl.
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Appendix

Connected graphs on 3 vertices α(G)

1

Connected graphs on 4 vertices

Connected graphs on 5 vertices

2

1

2

3

1

2

3

α∗(G) Type

3
2

2

K

SK

2

3

2

K

SK

K

5
2

5
2

K

K

3 SK or STK

Proof

• Alon, (Kruskal, Katona)

• Ahlswede, Katona

• Alon, (Kruskal, Katona)

• Alon, (Kruskal, Katona)

• Kenyon, Radin, Ren, Sadun
• Reiher, Wagner

• Alon

• Lemma 2 + Corollary 3

3

4

3

4

SK

SK

• Nagy

• Kenyon, Radin, Ren, Sadun
• Reiher, Wagner

• Alon

(assuming Conjectures 1 and 2)

Figure 5: All the known types of connected graphs on 5 or fewer vertices. The types of all but

7 of these graphs are known based on the results of the listed authors. If one assumes that

Conjectures 1 and 2 are true, then the remaining 7 graphs must be of type SK or type STK.


