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You probably know that 22
7

is a good approximation to π. How good is it actually? We
can measure this by looking at the absolute value of the difference between 22

7
and π, or,

in symbols, ∣∣∣∣π − 22

7

∣∣∣∣
and comparing this to 1

14
. Why 1

14
? Because any real number x, rational or irrational, can

be approximated by some fraction of the form p
7
, where p is an integer, and where∣∣∣x− p

7

∣∣∣ ≤ 1

14
.

Make sure you understand why this is, before reading further.
It turns out that ∣∣π − 22

7

∣∣
1
14

≈ 0.0177,

which is small, indicating that the approximation is indeed pretty good. What if we wanted
to find an even better approximation? Let’s examine where 22

7
came from in the first place.

The greatest integer less than π is 3, and subtracting 3 from π we get 0.14159 . . .. Now
the reciprocal of this is just a bit more than 7, so π ≈ 3 + 1

7
= 22

7
. The point is that we

can continue this process. If we subtract 7 from 1
π−3

= 7.06251 . . ., and take the reciprocal
of that, we get something just very slightly less than 16. So

3 +
1

7 + 1
16

=
355

113
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is going to be an even better approximation. In fact this excellent approximation –
|π − 355

113
| ≈ 0.000000267 and 0.000000267/ 1

226
≈ 0.00006 – was known to the Chinese

astronomer Tsu Ch’ung-Chih over 1500 years ago.
We could continue expanding this fraction as

π = 3 +
1

7 + 1
16− 1

···

but it is usual to always have + signs, so that we would actually continue as follows:

π = 3 +
1

7 + 1
15+ 1

1+ 1

292+ 1

1+ 1
···

– the 292 providing additional confirmation of the excellence of Tsu Ch’ung Chih.
Now it turns out that stopping the expansion (which is called the continued fraction

expansion) of π at any point always yields very good rational approximations to π. Let’s
try to figure out why. It should be obvious to you that π differs from 22

7
by less than

1
7
. Can you see why the error is actually guaranteed to be less than 1

56
? This is the

key to understanding why the so called continued fraction convergents provide such good
approximations.

There are many interesting connections between continued fractions and other topics
in mathematics. For instance, there is nothing stopping us from computing the continued
fraction expansion of a rational number instead of an irrational one – nothing stopping us,
that is, until the expansion itself stops. Here is the continued fraction for 15

64
:

15

64
=

1

4 + 1
3+ 1

1+1
3

.

There is a connection with the Euclidean algorithm here – see if you can discover it.
Here’s another example which arose in some situation connected with GPS when I

was working at Philips Research Laboratories 10 years ago (and doubtless in many other
contexts as well). I have actually forgotten the details of the GPS context, but anyway.
Take an irrational number θ, and consider the sequence of fractional parts of multiples
of θ, i.e. {θ}, {2θ}, {3θ}, . . .. We can visualize this process by imagining walking around
a circle of circumference 1 with footsteps of length θ, and recording where our feet land.
Next, we divide the circle into two equal halves, and, after some large number of steps, we
count the number of footsteps in each half. We would like these two numbers to be about
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the same. Otherwise there is said to be “bias”. Choosing values of θ which avoid bias of
this type is facilitated by calculating the continued fraction expansion of θ.

A third example is the connection with Pell’s equation

x2 − dy2 = 1

where d is some squarefree positive integer and x and y 6= 0 are required to be integers.
For a typical solution, x and y will be large, and so we will have

x2

y2
= d+

1

y2
≈ d

and hence
x

y
≈
√
d.

It turns out that x and y can be obtained as the numerators and denominators of some of
the convergents for

√
d !

Reading about the history of mathematics, it seems that continued fractions used to
play a more central role at the frontier. For example, the first proof that π is irrational,
given by Johann Lambert in 1760, used continued fractions. Not much is known about the
continued fraction expansion of π, but amazingly there is one for tanx:

tanx =
x

1− x2

3− x2

5− x2

7−x2
···

.

Lambert argued that if x 6= 0 is rational, then, using this expansion, tanx cannot be. But
tan π

4
= 1 is rational, so π

4
, and hence π itself, cannot be.

Homework

1. Calculate the continued fraction expansion of the golden ratio.

2. (Putnam 1995) Evaluate {
2207− 1

2207− 1
2207−···

}1/8

.

Express your answer in the form a+b
√
c

d
, where a, b, c, d are integers.

[Hint. Solve x = 2207− 1
x
.]
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