Graph Theory

November 16, 2012

Class Problems

1. (Putnam 1953) Six points are in general position in space (no three in a line, no four
in a plane). The fifteen line segments joining them in pairs are drawn and then painted,
some segments red, some blue. Prove that some triangle has all its sides the same color.

A graph G is aset V = V(G) of vertices, together with a subset £ = E(G) of the set
of unordered pairs of elements of V. The members of E are called edges. Graphs can be
finite or infinite, but let’s just consider finite graphs for now, i.e., let’s suppose |V| is finite
(in which case so is |E|). Vertices x and y are said to be adjacent if {z,y} € E, so that
there is an edge e “joining” them. The edge e is usually written xy rather than {x,y},
and is said to be incident with its endvertices x and y. The degree d(z) of a vertex
x (this is the singular of “vertices”) is the number of edges incident with x. We normally
visualize graphs by drawing them: below is a graph with 10 vertices and 11 edges.

Figure 1: A graph



Here’s an easy exercise: prove that, in any finite graph, the sum of the degrees of the
vertices (22 in the graph above) is always twice the number of edges. By the way, the
order and size of a graph G are the numbers of vertices and edges of G, respectively.
A graph of order n can have at most (g) edges: if it has all (g) edges, it is said to be
complete and written K,. (K stands for one of Komplett, Kazimierz or Kuratowski -
I don’t know which.) A graph is connected if there’s a path between any two of its
vertices (a path is what you think it is); the maximal connected subgraphs (a subgraph
is also what you think it is) of a graph are called its components. The graph above has
2 components, one of which is an isolated vertex. A graph with no cycles (guess what
these are) is said to be acyclic, or a forest, and a connected forest is called a tree.

So, to get back to the Putnam question we started with, you have to show that if the
edges of the complete graph Ky are each colored either red or blue, then the colored Kg
contains either a red triangle, or a blue triangle (or both). If you can do this, you will have
proved a special case of Ramsey’s theorem, which states that, for all k, there exists an
N = N(k), such that if the edges of Ky are colored either red or blue, then the colored
K contains either a red Ky (with all (g) edges red), or a blue K. This theorem is one of
the cornerstones of Ramsey Theory — another fundamental result in Ramsey Theory is
the Hales-Jewett theorem, which I mention because one of its discoverers, R.I. Jewett,
retired from teaching here at WWU only 2 years ago, and indeed he used to teach this very
class. His coauthor, A.W. Hales, was one of the winners (top 5 scorers) of the Putnam in
1958 and 1959.

But I digress. Here’s another problem from the early days of the Putnam.

2. (Putnam 1956) Consider a set of 2n points in space, n > 1. Suppose they are joined by
at least n? + 1 segments. Show that at least one triangle is formed. Show that for each n
it is possible to have 2n points joined by n? segments without any triangles being formed.

In other words, prove that a graph of order 2n and size at least n? + 1 contains a
triangle, K3. This result, Mantel’s theorem, is a special case of Turan’s theorem,
which gives the maximum number f(n,r) of edges in a graph of order n without a K,.
Turan’s theorem marks the start of what is known as Extremal Graph Theory.

For a hint on Mantel’s theorem, suppose that xy is an edge in a graph G of order 2n
and size m with no triangles. Prove that d(z) + d(y) < 2n. Now prove that

Y d@)P= ) (d)+d(y)) < 2nm.
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Finally, apply the Cauchy-Schwarz inequality, together with the result of the easy exercise
at the top of the page. This is one of the many proofs of the theorem.



The most useful proof technique in graph theory is mathematical induction. Both
Ramsey’s theorem and Turan’s theorem are best proved using induction. Another useful
technique is double counting, which means counting the same thing in two different
ways. But that’s another story, which can wait.

Homework

1. (Putnam 1958) Let a complete oriented graph on n points be given, i.e., a set of n points
1,2,3...,n, and between any two points 7 and j a direction, ¢ — j. Show that there exists
a permutation of the points, [a, as, as, ..., a,], such that a; — as = az — -+ — ay,.

2. (Putnam 1965) At a party, assume that no boy dances with every girl but each girl
dances with at least one boy. Prove that there are two couples gb and ¢’b’ which dance
whereas b does not dance with ¢’ nor does g dance with b'.

3. (Putnam 1968) Prove that a list can be made of all the subsets of a finite set in such a
way that i) the empty set is first in the list, ii) each subset occurs exactly once, iii) each
subset in the list is obtained either by adding one element to the preceding subset or by
deleting one element of the preceding subset.

4. (Putnam 1990) Let G be a finite group of order n generated by a and b. Prove or
disprove: there is a sequence ¢, go, g3, - - - , g2, Such that every element of G' occurs exactly
twice, and g;41 equals g;a or g;b, for i = 1,2,...,2n. (Interpret go,.1 as g.)

Fun problems to think about over Thanksgiving

5. (Putnam 1958) Given a set of n + 1 positive integers, none of which exceeds 2n, show
that at least one member of the set must divide another member of the set.

6. (Putnam 1962) Given five points in a plane, no three of which lie on a straight line,
show that some four of these points form the vertices of a convex quadrilateral.

7. (Putnam 1971) Let ¢ be a real number such that n° is an integer for every positive
integer n. Show that ¢ is a non-negative integer.



