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I chose these projects because I think they are all interesting: they are of different levels
of difficulty, and I will take this into account when grading your presentations. Choose a
project you like. (I will find some way of dealing with conflicts, should they arise.) The
aim is to have 3 people to each project: you are each required to read and understand the
proof(s), and each of you should present something in class.

Kuratowski’s theorem

Kuratowski’s theorem states that a graph is planar if and only if it does not contain a
subdivision of K5 or K3,3. The theorem is stated on page 24 of Modern Graph Theory by
Bollobás. The two papers below contain short proofs: present whichever proof you like.

[1] Y. Makarychev, A short proof of Kuratowski’s graph planarity criterion, Journal of
Graph Theory 25 (1997), 129–131.

[2] C. Thomassen, Kuratowski’s Theorem, Journal of Graph Theory 5 (1981), 225–241.

Vizing’s theorem

Vizing’s theorem states that for any graph G,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

where ∆(G) is the maximum degree of G and χ′(G) is the edge chromatic number of G.
There is a proof on pages 153–154 of Modern Graph Theory by Bollobás.
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Google

One of the ideas behind Google was to model the web as a graph, and to imagine a
“random surfer” clicking on links (i.e. traversing edges) at random. Imagine that the
surfer spends only a billionth of a second on each page, and surfs for, say, a week. Then
the proportion of time spent by the random surfer on a particular webpage (vertex) is
related to its PageRank, which ranks webpages in order of “importance”. This determines
the order in which the search results appear on the screen.

This project is different from the others in that it is more open-ended. Also, it has
more of a linear algebra flavour. A good place to begin would be with the papers below.

[1] K. Bryan and T. Leise, The $25,000,000,000 eigenvector: the linear algebra behind
Google, http://www.rose-hulman.edu/∼bryan/googleFinalVersionFixed.pdf
(accessed 23 January 2012).

[2] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine,
http://www-db.stanford.edu/∼backrub/google.html (accessed 23 January 2012).

Stable marriages

Hall’s marriage theorem gives a necessary and sufficient condition for the existence of
matchings in bipartite graphs. It has many applications in combinatorics, algebra and
analysis. One way of formulating it is in terms of arranging marriages between m girls and
n ≥ m boys. What if we go one step further and insist that these marriages are stable?
In this setup each girl (resp. boy) separately ranks each of the boys (resp. girls) in order
of preference, and we aim to arrange the marriages so that if girl x is not married to boy
y, then either x is already married to someone she prefers to y, or y is already married
to someone he prefers to x. Such a stable system of marriages can in fact be arranged.
All this probably sounds incredibly silly, but it is in fact very important and has many
applications. One such application is to list colouring.

All this is covered Modern Graph Theory by Bollobás – the basic theorem is on pages
85–91, and the application to list colouring (not part of the project) is on pages 161–165.
The original papers are listed below – the first is a classic.

[1] D. Gale and L.S. Shapley, College admissions and the stability of marriage, American
Mathematical Monthly 69 (1962), 9–15.

[2] T. Slivnik, A short proof of Galvin’s theorem on the list-chromatic index of a bipartite
multigraph, Combinatorics, Probability and Computing 5 (1996), 91–94.
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Crossing numbers

The crossing number cr(G) of a graph G is the smallest number of crossings in a
drawing of G in the plane, so that, for instance, cr(G) = 0 iff G is planar. The special
case cr(Km,n) is known as Turán’s brick factory problem and dates from 1944, when Paul
Turán was working in a brick factory in a forced-labour camp during the Second World
War. A more recent application is to VLSI design in computer science.

If G has n vertices and m edges, and if m > 4n, then cr(G) ≥ m3/64n2. This is one
version of the crossing number inequality. In 1995, László Székely discovered that this
inequality yields very short proofs of some previously very hard results. For example, he
used it to prove that, given n points in the plane, one of them determines at least cn4/5

distinct distances from the others. Both the basic inequality and the application are part
of the project.

[1] L.A. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combi-
natorics, Probability and Computing 6 (1997), 353–358.

Koebe’s theorem

This beautiful theorem states that every planar graph is a coin graph. In other words,
given a planar graph G = (V,E), we can represent each v ∈ V by a circle Cv in the plane
so that if uw ∈ E then Cu and Cw touch (are tangent to each other), and if uw 6∈ E then
Cu and Cw are disjoint. I have not seen Koebe’s original proof (it is written in German),
but there is a proof on pages 96–99 of Combinatorial Geometry by Pach and Agarwal. The
proof contains some statements left as exercises, which you will have to do.

You might be interested in reading the biography of Koebe at

http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Koebe.html

(but this is not part of the project).
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