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Abstract

Consider a wireless cellular network consisting of small, densely scattered
base stations. A user u is uniquely covered by a base station b if u is the only
user within distance r of b. This makes it possible to assign the user u to the
base station b without interference from any other user u′. We investigate the
maximum possible proportion of users who are uniquely covered. We solve this
problem completely in one dimension and provide bounds, approximations and
simulation results for the two-dimensional case.
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1. Introduction

Consider a wireless cellular network consisting of small, densely scattered
base stations, each with limited processing capability. (In (Bursalioglu et al.,
2016) and the related engineering literature, the small base stations are called
remote radio heads.) In such a network, a user u is uniquely covered by a base
station b if u is the only user within distance r of b. This makes it possible to
assign the user u to the base station b without interference from any other user
u′. Ideally, we would like to assign a base station to every user. However, the
underlying stochastic geometry will prevent this. In this paper, we investigate
the maximum possible proportion of users who can be uniquely assigned base
stations, as the communication range r varies, for each pair of densities of both
users and base stations.

Although we have just referred to two densities, only their ratio is significant;
in other words, the model can be scaled so that we expect one user per unit
area. Accordingly, we set the intensity of users to be one. Thus the only
parameters we need to consider are the density µ of base stations, and the
range r. Moreover, we note that our analysis also solves the problem, considered
in (Bursalioglu et al., 2016), of uniquely assigning users to base stations (so as
to avoid pilot contamination); to see this, simply interchange the roles of users
and base stations.
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All logarithms in this paper are to base e.

2. Model

Our model is as follows. Fix r > 0, and let P and P ′ be independent Poisson
processes, of intensities µ and 1 respectively, in R

d. The main case of interest
is d = 2. The points of P represent the base stations, and the points of P ′

represent the users. A user u ∈ P ′ is uniquely covered by a base station b ∈ P if
firstly ||b− u|| < r, and secondly ||b− u′|| ≥ r for every other user u′ ∈ P ′. We
wish to calculate (or estimate) the proportion pd(µ, r) of users who are uniquely
covered by base stations; note that this proportion is also the probability that
an arbitrary user is uniquely covered by a base station.

3. A general result

In order to state our main result, we need some notation. First, for simplicity,
we will initially consider just the case d = 2. Next, let D = D(O, r) be the fixed
open disc of radius r, centered at the origin O. Write fr(t) for the probability
density function of the fraction t of D which is left uncovered when discs of
radius r, whose centers are a unit intensity Poisson process, are placed in the
entire plane R2. There is in general no closed-form expression for fr(t); however,
the function is easy to estimate by simulation.

Theorem 1. In two dimensions, we have

p2(µ, r) =

∫ 1

0

(1− e−µπr2t)fr(t) dt. (1)

Proof. The main idea of the proof is to put down the users first, and then, for
a fixed user u, calculate the probability that a base station b “lands” in such a
way that u is uniquely covered by b. To this end, place a disc D(u, r) of radius
r around each user u, and then a fixed user u is uniquely covered if there is a
base station b ∈ D(u, r) such that b 6∈ D(u′, r) for all other users u′ 6= u. Let
X be the random variable representing the uncovered area fraction of D(u, r)
when all the other discs D(u′, r) are placed randomly in the plane. Then

P(u is covered | X = t) = 1− e−µπr2t,

since for u to be covered we require that some base station b lands in the uncov-
ered region in D(u, r), which has area πr2t. (Here, by “uncovered”, we mean
“uncovered by the union of all the other discs

⋃

u′ 6=u D(u′, r)”.) Consequently,

p2(µ, r) =

∫ 1

0

P(u is covered | X = t)fr(t) dt =

∫ 1

0

(1− e−µπr2t)fr(t) dt,

as required.
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The same argument yields the following result for the general case. For
d ≥ 1, write Dd(O, r) for the d-dimensional ball of radius r centered at the
origin O, and fd

r (t) for the probability density function of the fraction t of
Dd(O, r) which is left uncovered when balls of radius r, whose centers are a unit
intensity Poisson process, are placed in R

d. Finally, let Vd be the volume of the
unit-radius ball in d dimensions.

Theorem 2. In d dimensions, we have

pd(µ, r) =

∫ 1

0

(1− e−µVdr
dt)fd

r (t) dt.

4. The case d = 1

Unfortunately, fd
r (t) is only known exactly when d = 1. The result is sum-

marized in the following lemma, in which for simplicity we consider the closely
related function gr(s) := f1

r (s/2r), which represents the total uncovered length
in (−r, r).

Lemma 3. In one dimension, we have

gr(s) := f1
r (s/2r) =











1− e−2r(1 + 2r) point mass at s = 0

(2 + 2r − s)e−(2r+s) 0 < s < 2r

e−4r point mass at s = 2r.

Proof. Consider the interval Ir := D1(O, r) = (−r, r). The uncovered length U
of Ir is determined solely by the location of the closest user ul to the left of the
origin O, and the closest user ur to the right of O. Suppose indeed that ul is
located at −x and that ur is located at y. Then it is easy to see that if x+y ≤ 2r,
we have U = 0; in other words, all of Ir is covered by D(ul, r) ∪D(ur, r) when
x + y ≤ 2r. At the other extreme, if both x ≥ 2r and y ≥ 2r, then U = 2r; in
this case the entire interval Ir is left uncovered by D(ul, r) ∪ D(ur, r), and so
by the union

⋃

u D(u, r). In general, a lengthy but routine case analysis gives

U =































0 x+ y ≤ 2r

x+ y − 2r x+ y ≥ 2r, x ≤ 2r, y ≤ 2r

x 0 ≤ x ≤ 2r, y ≥ 2r

y 0 ≤ y ≤ 2r, x ≥ 2r

2r x ≥ 2r, y ≥ 2r.

This immediately yields the point masses of gr(s), since x + y has a gamma
distribution of mean 2, and x and y are each exponentially distributed with
mean 1. For 0 < s < 2r we find, using the above expression, that

gr(s) = 2e−2r · e−s +

∫ 2r

s

e−xe−(2r+s−x) dx = (2 + 2r − s)e−(2r+s),

completing the proof of the lemma.
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Figure 1: Fraction of users that are uniquely covered in one dimension. The circle indicates
the maximum p1(µ, ropt), where ropt is given in (2).

Using this lemma, we obtain the following expression for p1(µ, r).

Theorem 4. In one dimension, we have

p1(µ, r) =
µe−2r(µ+ 2r + 2rµ)− µ2e−2r(2+µ)

(1 + µ)2
.

Proof. From Theorem 2 and Lemma 3 we have

p1(µ, r) =

∫ 2r

0

gr(s)(1 − e−µs) ds

= e−4r(1 − e−2rµ) +

∫ 2r

0

(2 + 2r − s)e−(2r+s)(1− e−µs) ds

=
µe−2r(µ+ 2r + 2rµ)− µ2e−2r(2+µ)

(1 + µ)2
.

p1(µ, r) is illustrated in Fig. 1. The value of r that maximizes p1 is

ropt(µ) =
1 +W(µ(µ+ 2)e−1)

2µ+ 2
, (2)

where W is the (principal branch of the) Lambert W-function. It is easily seen
that ropt(0) = 1/2 and that ropt decreases with µ.
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5. The case d = 2

In two dimensions, although the function f2
r (t) is currently unknown, it can

be approximated by simulation, and then the integral (1) can be computed
numerically. While this still involves a simulation, it is more efficient than
simulating the original model itself, since f2

r can be used to determine the
unique coverage probability for many different densities µ (and the numerical
evaluation of the expectation over X is very efficient). The resulting unique
coverage probability p2(µ, r) is illustrated in Fig. 2. The maxima of p2(µ, r)
over r, achieved at p2(µ, ropt(µ)), are highlighted using circles. Interestingly,
ropt(µ) ≈ 4/9 for a wide range of values of µ; the average of ropt(µ) over
µ ∈ [0, 10] appears to be about 0.45.

The simulated fr(t) is shown in Fig. 3 for r = 3/9, 4/9, 5/9. Remarkably,
the density f4/9(t) is very close to uniform (except for the point masses at 0

and 1). If the distribution were in fact uniform, writing v = E(X) = e−πr2 =
e−16π/81 ≈ 0.538, we would have

f̂4/9(t) =











1 + v4 − 2v ≈ 0.008 point mass at t = 0

2(v − v4) ≈ 0.908 0 < t < 1

v4 ≈ 0.084 point mass at t = 1.

(3)

Here, v4 = e−4πr2 is the probability that no other user is within distance 2r, in
which case the entire disc D(O, r) is available for base stations to cover O. The
constant 2(v − v4) is also shown in Fig. 3 (dashed line). Substituting (3) in (1)
yields the following approximation to p2(µ, 4/9) and to p2(µ, ropt):

p2(µ, ropt(µ)) ≈ 2(v−v4)

(

1−
1− e−c

c

)

+v4(1−e−c), c = µπ(4/9)2 = −µ log v.

(4)
This approximation is shown in Fig. 4, together with the exact numerical result.
For µ ∈ [3, 7], the curves are indistinguishable.

For small µ, p2(µ, r) ≈ e−πr2(1−e−µπr2) (see Theorem 5 immediately below),
and so

ropt(µ) ≈

√

log(1 + µ)

µπ
→ π−1/2

as µ → 0.
Next, we turn to bounds and approximations. It is straightforward to obtain

a simple lower bound for p2(µ, r).

Theorem 5. p2(µ, r) ≥ e−πr2(1− e−µπr2).

Proof. A given user is covered if there is a base station within distance r (this

event has probability 1− e−µπr2), and if there is no other user within distance

r of that base station (this event has probability e−πr2). These last two events
are independent.
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Figure 2: Fraction of users that are uniquely covered in two dimensions. The circles indicate
the maxima p2(µ, ropt).
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Figure 3: Simulated densities fr(t) for r = 3/9, 4/9, 5/9 in two dimensions. The vertical lines
near 0 and 1 indicate the point masses. The dashed line is the uniform approximation (3) for
r = 4/9.
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Figure 4: Maximum fraction of users that are uniquely covered in two dimensions. The dashed
line is the approximation in (4).

This bound should become tight as µ → 0 (with r fixed), or as r → 0 (with µ
fixed), since, in those limiting scenarios, if there is a base station within distance
r of a user, it is likely to be the only such base station.

Finally, here is an approximation for p2(µ, r) when r is large. We use stan-
dard asymptotic notation, so that f(x) ∼ g(x) as x → ∞ means f(x)/g(x) → 1
as x → ∞. In our case, we will have r → ∞ with µ fixed.

Theorem 6. As r → ∞ with µ fixed, p2(µ, r) ∼ µπr2e−πr2 .

Proof. (Sketch) We recall Theorem 1, which states that

p2(µ, r) =

∫ 1

0

(1− e−µπr2t)fr(t) dt,

and attempt to approximate fr(t) as r → ∞.
To this end, it is convenient to describe the geometry of the union of discs

⋃

u∈P′ D(u, r) in some detail. Such coverage processes have been studied exten-
sively in the mathematical literature (Gilbert, 1965; Hall, 1988; Janson, 1986;
Meester and Roy, 1996); our approach follows that in (Balister et al., 2009,
2010). The main idea is to consider the boundaries ∂D(u, r) of the discs D(u, r),
rather than the discs themselves. Consider a fixed disc boundary ∂D(u, r). This
boundary intersects the boundaries ∂D(u′, r) of all discs D(u′, r) whose centers
u′ lie at distance less than 2r from u. There are an expected number 4πr2 of such
points u′ ∈ P ′, each contributing two intersection points ∂D(u, r) ∩ ∂D(u′, r),
and each intersection is counted twice (once from u and once from u′). There-
fore we expect 4πr2 intersections of disc boundaries per unit area over the entire
plane; note that these intersections do not form a Poisson process, since they
are constrained to lie on various circles.
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The next step is to move from intersections to regions. The disc boundaries
partition the plane into small “atomic” regions. Drawing all the disc boundaries
in the plane yields an infinite plane graph, each of whose vertices (disc boundary
intersections) has four curvilinear edges emanating from it. Each such edge is
counted twice, once from each of its endvertices, so there are almost exactly
twice as many edges as vertices in any large region R. It follows from Euler’s
formula V − E + F = 2 for plane graphs (Bollobás, 1998) that the number of
atomic regions in R is asymptotically the same as the number of intersection
points in R. Moreover, each vertex borders four atomic regions, so that the
average number of vertices bordering an atomic region is also four. Note that
this last figure is just an average, and that many atomic regions will have less
than, or more than, four vertices on their boundaries.

The third step is to return to the discs themselves and calculate the expected
number of uncovered atomic regions per unit area. It is most convenient to cal-
culate this in terms of uncovered intersection points. A fixed intersection point
is uncovered by

⋃

u∈P′ D(u, r) with probability e−πr2 (using the independence

of the Poisson process), so we expect 4πr2e−πr2 uncovered intersections, and so

πr2e−πr2 uncovered regions, per unit area in R. Therefore the expected number
of uncovered regions in D(u, r), which has area πr2, is α = (πr2)2e−πr2 → 0.

How large are these uncovered atomic regions? To answer this, recall that
the expected uncovered area in D(u, r) is πr2e−πr2 . The uncovered atomic
regions form an approximate Poisson process, so that the probability of seeing
two uncovered regions in D(u, r) is negligible. Now let Xr, with density function

fr(t), be the uncovered area fraction in D(u, r). We have E(Xr) = e−πr2, but
P(Xr = 0) ∼ e−α ∼ 1 − α. Writing now Yr for the expected uncovered area
fraction in D(u, r) conditioned on Xr > 0, and hr(t) for the density of Yr, we see
that E(Yr) ∼ α−1

E(Xr) = (πr2)−2. In other words, if there is uncovered area in
D(u, r), it occurs in one atomic region of expected area (πr2)−1. Consequently,
we have

p2(µ, r) =

∫ 1

0

(1− e−µπr2t)fr(t) dt ∼ α

∫ 1

0

(1 − e−µπr2t)hr(t) dt

∼ αµπr2
∫ 1

0

thr(t) dt = αµπr2E(Yr) ∼ αµ(πr2)−1 = µπr2e−πr2.

Note that this is the same result that we would have obtained from the
incorrect argument that Xr is concentrated around its mean, whereas in fact its
density fr(t) has a large point mass at t = 0. Indeed, the thrust of the above
argument is that, for the relevant range of t (namely, for t = O((πr2)−2)),

1 − eµπr
2t − µπr2t = O(r4t2) = O(r−4), which is asymptotically negligible

compared to the remaining terms.
Fig. 5 shows p2(µ, r), together with the lower bound from Theorem 5 and

the asymptote from Theorem 6. As predicted, Theorem 5 is close to the truth
when r is small, while Theorem 6 is more accurate for large values of r.
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Figure 5: p2(µ, r) for µ = 0.05, 0.5, 5, with the lower bound from Theorem 5 and the approx-
imation from Theorem 6. (Left) linear scale. (Right) logarithmic scale.

Both these last two results generalize to the d-dimensional setting in the
obvious way; for simplicity we omit the details.

6. Conclusions

In this paper, we have investigated a natural stochastic coverage model,
inspired by wireless cellular networks. For this model, we have studied the
maximum possible proportion of users who can be uniquely assigned base sta-
tions, as a function of the base station density µ and the communication range r.
We have solved this problem completely in one dimension and provided bounds,
approximations and simulation results for the two-dimensional case. We hope
that our work will stimulate further research in this area.
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